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 ABSTRACT  
This paper is a first attempt on analytical approach to shot peening. Shot 
peening improves the surface engineering quality by eliminating the tool 
marks, such as machining, grinding, stamping and other surface defects. Most 
importantly, the improvements of shot peening are produced by combination 
of compressive stress and cold work. Compressive stresses are beneficial in 
increasing resistances to fatigue failures, while the cold work effects of shot 
peening treatments can increase the surface hardness. Although shot peening 
is extensively used in the industry, its academic understanding is very low. 
Shot peening has been considered as a black art and black engineering in the 
industry. The focus of this research is to layout foundation of the shot peening 
research in academic world. Only then, will the research propel more 
systematically rather than via the conventional industrial trial and error 
approach. In this research, analytical approach with experimental verification 
is presented. 
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INTRODUCTION  
 
Shot peening has been used for decades as a measure to overcome surface engineering problems 
in various industries. Its improvements are produced mainly by combinations of compressive 
residual stress and cold work. Compressive residual stresses are known to be beneficial in 
increasing resistances to fatigue failures and corrosion fatigue, while the cold work effects of shot 
peening treatments can increase the surface hardness of many materials (Dounde et al., 2015). 
It is believed to be the most economical and effective method of producing and making surface 
residual compressive stresses to increase the product life of treated metal parts. The increased 
strength of treated parts allows for lighter-weight parts that exhibit high wear and fatigue 
resistance. 

The process can be defined as work hardening to the surface of components by propelling 
streams of spherical shots to the surface. The surface layer of material yields plastically to generate 
residual compressive stress. Among the practitioners, it has been known well that many 
parameters influence the efficiency of shot peening process. These are the peening coverage, 
saturation, shot material, shot size, speed, and peening time (Higounenc, 2005). 

The topic of shot peening is chosen due to the reason that fundamental understanding on this 
subject is low. For very long time, this subject has been regarded as a “black engineering” which 
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for example the perceived of benefit using larger size is real but explanation is lack. Likewise, the 
speed is also beneficial to increase the effectiveness but the reasons of those benefits were not 
disseminated by those who understand science well. In a way this paper is promoting to the 
academics for the science of shot peening, instead of keeping the “black art of shot peening” in 
the industry. This attempt is also on the line with the policy among the shot peeners3 from long 
time ago. 
 
ANALYTICAL SOLUTION 
 
The starting point for the construction of the shot peening model is the solution of the problem 
for a single impact of a ball on a half-space 4.   The initial data for the models are: 
 

𝑉𝑉 – speed of flying shot balls; 
𝑅𝑅 – radius of shot balls; 
𝜌𝜌 – density of the shot ball material; 
𝐸𝐸 – elastic modulus; 
𝜇𝜇 – Poisson's ratio; 
𝜎𝜎𝑢𝑢 = 𝐺𝐺𝑢𝑢(Ɛ𝑢𝑢) – material hardening curve. 

 
A ball flying at a speed 𝑉𝑉 hits the surface, contact forces develop in the contact zone, and the 
kinetic energy of the ball begins to be transformed into the elastic energy of the ball/half space 
and plastic deformation of the material to be shot peened. After the velocity of the ball becomes 
zero, the following condition is achieved: 
 

𝑚𝑚𝑉𝑉2

2
= 𝑘𝑘( 𝐴𝐴п + 𝐴𝐴ш) (1) 

 
where 

𝐴𝐴п  – is half-space energy; 
𝐴𝐴ш – elastic energy of a ball; 
𝑘𝑘 – Correction factor, taking into account the influence of the roughness of the 
hydrodynamic film formed at the moment of impact. 

 
Equation (1) is the starting point for the formation of boundary conditions for the contact 

problem with an inhomogeneous half-space. In order to calculate the work 𝐴𝐴п, it is necessary to 
find the stress distribution in the half-space. To do this, we solve a system of differential equations 
describing the elastoplastic behavior of the material. Taking into account the axial symmetry, the 
set of equations is most conveniently written in the cylindrical coordinate system (𝑟𝑟,𝜃𝜃,𝑍𝑍), where 
𝑟𝑟 – radius, 𝑍𝑍 – axis, directed along the axis of symmetry, 𝜃𝜃 – polar angle. 

It is assumed that the mass forces are absent after collision, so the equations of equilibrium 
are as follows: 
 

𝑑𝑑𝜎𝜎𝑟𝑟
𝑑𝑑𝑟𝑟

+
𝑑𝑑𝜏𝜏𝑟𝑟𝑟𝑟
𝑑𝑑𝑍𝑍

+
𝜎𝜎𝑟𝑟 − 𝜎𝜎𝜃𝜃

𝑟𝑟
= 0 (2a) 
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𝑑𝑑𝜎𝜎𝑍𝑍
𝑑𝑑𝑍𝑍

+
𝑑𝑑𝜏𝜏𝑟𝑟𝑟𝑟
𝑑𝑑𝑟𝑟

+
𝜏𝜏𝑟𝑟𝑟𝑟
𝑟𝑟

= 0 (2b) 

 
In what follows, the following notations are used: 

𝜎𝜎𝑟𝑟 ,𝜎𝜎𝑍𝑍 – radial and axial stresses; 
Ɛ𝑟𝑟 , Ɛ𝑍𝑍 – radial and axial deformations; 
𝑢𝑢,𝜔𝜔 – radial and axial movements; 
𝜏𝜏𝑟𝑟𝑟𝑟 = 𝜏𝜏 – tangential stresses; 
 𝛾𝛾𝑟𝑟𝑟𝑟 = 𝛾𝛾  – shear strain; 
𝜃𝜃 – bulk deformation. 

 
For the convenience of solving the equation (2a, 2b), they are transformed into: 
 

𝑑𝑑(𝜎𝜎𝑟𝑟𝑟𝑟)
𝑑𝑑𝑟𝑟

+
𝑑𝑑(𝑟𝑟𝜏𝜏𝑟𝑟𝑟𝑟)
𝑑𝑑𝑍𝑍

+ 𝜎𝜎𝜃𝜃 = 0; (3a) 
  

𝑑𝑑(𝜎𝜎𝑍𝑍𝑟𝑟)
𝑑𝑑𝑍𝑍

+
𝑑𝑑(𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟)
𝑑𝑑𝑟𝑟

= 0 (3b) 

 
This is done to make it easier to approximate the system being solved on the Z axis. Indeed, the 
system (3a, 3b) can be correctly solved only under the condition that: 
 

lim
𝑟𝑟→0

𝑟𝑟𝜎𝜎𝑟𝑟 = 0,   lim
𝑟𝑟→0

𝑟𝑟𝜎𝜎𝑍𝑍 = 0 (4) 
 
These limiting relations are also established when finite-difference formulas are realized.  To solve 
the problem, the finite volume of the half-space in the form of a cylinder of radius 𝑅𝑅 and height 
𝐻𝐻 are selected. On the upper base of the cylinder, the boundary conditions are given in the 
displacements (Figure 1), which are: a) within the contact area 𝑢𝑢 = 𝑢𝑢0, 𝜔𝜔 = 𝜔𝜔0, where 
(𝑢𝑢0,𝜔𝜔0)  is the introduction of an indenter into a half-space at specified distances from the Z 
axis; b) outside the contact area it is free, that is, at the corresponding nodes the system (equation 
4) is solved. 
 

 
Figure 1. Diagram of contact area 
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In addition, in connection with the lack of friction, the tangential stresses on the surface are zero 
𝜏𝜏 = 0. On the lateral face of the cylinder 𝑟𝑟 = 𝑅𝑅 and on the lower base 𝑍𝑍 = 𝐻𝐻 the boundary 
conditions are given in the stresses, which are calculated from the formulas of the theory of 
elasticity, namely, on the lateral surface: 
 

𝜎𝜎𝑟𝑟 = 𝜎𝜎𝑟𝑟
упр(𝑅𝑅,𝑍𝑍); 𝜏𝜏 = 𝜏𝜏упр(𝑅𝑅,𝑍𝑍) (5a) 

 
at the bottom: 
 

𝜏𝜏𝑟𝑟 = 𝜏𝜏𝑟𝑟(𝑟𝑟,𝐻𝐻); 𝜎𝜎𝑍𝑍 = 𝜎𝜎𝑍𝑍
упр(𝑟𝑟,𝐻𝐻), (5b) 

 
where 𝜎𝜎𝑟𝑟

упр,𝜎𝜎𝑍𝑍
упр,  𝜏𝜏упр are calculated from the formulas for solving the problem of indentation 

by a spherical indenter into an elastic half-space. In this case, the dimensions of the cylinder must 
be chosen so that the area of plastic deformation is inside the cylinder. On the axis of symmetry 
𝑟𝑟 = 0 as boundary values we take the following conditions: 𝑢𝑢𝑟𝑟 = 0, since on the axis of 
symmetry the radial displacement is zero; 𝜏𝜏𝑟𝑟𝑟𝑟 = 0 similarly, by virtue of symmetry.  
To describe the plasticity processes, we use the equations of the theory of small elastoplastic 
deformations and the method of elastic solutions, which, after some transformations, can be 
written in the form of Hooke's law: 
 

Ɛ𝑟𝑟 =
1
𝐸𝐸∗

[𝜎𝜎𝑟𝑟 − 𝑉𝑉∗(𝜎𝜎𝜃𝜃 + 𝜎𝜎𝑟𝑟)]; (6a) 
  

Ɛ𝑍𝑍 =
1
𝐸𝐸∗

[𝜎𝜎𝜃𝜃 − 𝑉𝑉∗(𝜎𝜎𝑟𝑟 + 𝜎𝜎𝑍𝑍)]; (6b) 
  

Ɛ𝜃𝜃 = 0,      𝛾𝛾 =
1
𝜎𝜎∗
𝜏𝜏, (6c) 

 
where: 
 

𝐸𝐸∗ =

𝜎𝜎𝑢𝑢
Ɛ𝑢𝑢

1 + 3 − 2𝑉𝑉
3𝐸𝐸 ∙ 𝜎𝜎𝑢𝑢Ɛ𝑢𝑢

;   𝜎𝜎∗ =
𝜎𝜎𝑢𝑢
3Ɛ𝑢𝑢

; (7a) 

  

𝑉𝑉∗ = (
1
2
−

1 − 2𝑉𝑉
3𝐸𝐸

∙
𝜎𝜎𝑢𝑢
Ɛ𝑢𝑢

) (� 1 +
1 − 2𝑉𝑉

3𝐸𝐸
∙
𝜎𝜎𝑢𝑢
Ɛ𝑢𝑢

), (7b) 

 
 Here 𝜎𝜎𝑢𝑢 – stress intensity; 

Ɛ𝑢𝑢 – strain intensity.  
 
Then the solution of the problem in the theory of plasticity is reduced into solving a problem of 
the contact theory of elasticity with variable elasticity parameters, determined by the formula 
described in Equations (6) and (7), and the relationship between the elasticity parameters: 
 

𝜎𝜎∗ = 𝐸𝐸∗/2(1 + 𝑉𝑉∗) (8) 
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The solution of contact tasks is organized as follows: 
• The initial introduction of the ball into the half-space is specified and, with the given boundary 

conditions, the method of variable elasticity parameters determines the stresses and 
deformations in the material; the energy of the deformed half-space is then determined from 
the formulas: 

𝐴𝐴 = � 2𝜋𝜋
𝐻𝐻

0

� 𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟
𝑅𝑅

0

, (9) 

 
where 𝑟𝑟 – energy density. 
 

𝑟𝑟 = 𝑟𝑟о + 𝑟𝑟ф, (10) 
 
where 𝑟𝑟о – bulk deformation energy; and 

𝑟𝑟ф – forming energy; 
 
 

𝑟𝑟о =
1 − 2𝑉𝑉∗

3𝐸𝐸∗
(𝜎𝜎𝑟𝑟 + 𝜎𝜎𝑍𝑍 + 𝜎𝜎𝜃𝜃)2; (11) 

  

𝑟𝑟ф = �𝜎𝜎𝑢𝑢

Ɛ

0

Ɛ𝑢𝑢𝑑𝑑Ɛ𝑢𝑢 (12) 

 
The verification of the fulfillment of the condition is by taking into account the assumption that 
the ball is perfectly rigid and 𝐴𝐴ш = 0. If the condition does not hold, then we continue to insert 
the ball into the half-space, until the condition is met. 

The method of variable elasticity parameters is as follows. In the first approximation, solve 
the usual problem of the theory of elasticity, when the variable elasticity parameters are constant 
𝐸𝐸∗ = 𝐸𝐸,  𝑉𝑉∗ = 𝑉𝑉 since the system becomes ordinary Hooke's law. At the first stage, we use the 
analytical formulas. From the obtained value, we find the deformations Ɛ𝑍𝑍

(1), Ɛ𝑟𝑟
(1), Ɛ𝜃𝜃

(1) and the 

stresses 𝜎𝜎𝑍𝑍
(1),𝜎𝜎𝑟𝑟

(1),𝜎𝜎𝜃𝜃
(1). According to the last values, at each point we determine the stress 

intensity 𝜎𝜎𝑢𝑢
(1) and the strain intensity Ɛ𝑢𝑢

(1). From the deformation curve we find the stress 
intensity 𝜎𝜎𝑢𝑢

(1)∗, which corresponds to the calculated value Ɛ𝑢𝑢
(1), then we set 𝜎𝜎1∗ = 𝜎𝜎𝑢𝑢

(1)∗/3Ɛ𝑢𝑢
(1), 

and find the modules 𝐸𝐸1∗ и 𝑉𝑉1∗ , according to equations (7a, 7b). 
In the second step we solve the problem of the theory of elasticity with the obtained elasticity 

parameters, we determine in the second approximation the displacement 𝑢𝑢(2) and 𝜔𝜔(2), then 
Ɛ𝑍𝑍

(2), Ɛ𝑟𝑟
(2), Ɛ𝜃𝜃

(2) и 𝜎𝜎𝑍𝑍
(2),𝜎𝜎𝑟𝑟

(2),𝜎𝜎𝜃𝜃
(2) , from them we find the intensities 𝜎𝜎𝑢𝑢

(2), Ɛ𝑢𝑢
(2)  at each point of 

space, we calculate 𝜎𝜎𝑢𝑢
(2)∗ by the deformation curve, we assume 𝜎𝜎2∗ = 𝜎𝜎𝑢𝑢

(2)∗/3Ɛ𝑢𝑢
(2) etc. 

The calculations are continued until the obtained results of the approximation calculations are 
different from the results (𝑛𝑛 − 1) of approximations by a given amount with the required 
accuracy. As the main criterion in the program, the condition, |𝜎𝜎𝑛𝑛∗ − 𝜎𝜎𝑛𝑛−1∗ | < Ɛ,  which means 
virtually invariance of the elastic parameters, thus process converges. 
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The impact of a ball on a surface is a complex process, for the description of which it is necessary 
to use the equations of thermoelasticity, plasticity, impact theory, hydrodynamics. In addition, the 
presence of a complex surface profile, which is formed due to roughness, makes this task difficult 
to resolve. At the same time, as the analysis has shown, it is possible to identify the determining 
equations on which the behavior of the model depends, and discard the remaining nonessential 
bonds. Since the speed of flying ball in the process of hydrobasting is not high, then we neglect 
the dynamic effects, and assume that the shock is quasistatic. It is quasistatic if: 
• the deformations are considered to be concentrated in the vicinity of the contact area and are 

determined by the static theory, the wave motion in the bodies is neglected; 
• each body moves at any time with the velocity of its center of mass. The quasistatic conditions 

remain valid also in the case of plastic deformations, since the presence of plastic flow reduces 
the intensity of the contact pressure and, consequently, the energy going to the elastic wave 
motion. In the shot peening, the impact speed is known to be up to 70 𝑚𝑚/𝑠𝑠, it is possible to 
use the relations for inelastic contact stresses under static conditions with the yield stress is 
replaced by a dynamic yield strength. For this reason, we neglect the influence of thermal 
stresses, since even assuming that the entire energy of the ball is spent on heating, it still does 
not suffice to exert a significant influence on the distribution of residual stresses. In practice, 
we assume that the surface is perfectly smooth, and the expenditure of energy expended on 
the deformation of the scallops will be taken into account in formula (3a, 3b) by introducing 
corresponding corrections in the coefficient 𝑘𝑘. 

Meanwhile, it is known from experiments and numerical calculations that the stress intensity is 
maximal on the axis of symmetry of the imprint and gradually decreases, tending to zero with 
increasing distance from the axis of symmetry of the print. With this in mind, for stress intensity, 
we can write the expression of: 
 

𝜎𝜎𝑢𝑢 = 𝛽𝛽(𝑍𝑍) ∙ 𝑒𝑒−Ɛ𝑟𝑟2 (13) 
 

Applying similar arguments for residual stresses and taking into account that they essentially 
depend on the yield strength of the material, we obtain the expression: 
 

𝜎𝜎𝑟𝑟ост = 𝜃𝜃𝑟𝑟(𝑍𝑍)(1 − 𝜇𝜇𝑟𝑟𝑟𝑟2 ) 𝑘𝑘𝑟𝑟𝜎𝜎𝑇𝑇⁄ ; (14a) 
  

𝜎𝜎𝜃𝜃ост = 𝜃𝜃𝜃𝜃(𝑍𝑍)(1 − 𝜇𝜇𝜃𝜃𝑟𝑟2 ) 𝑘𝑘𝜃𝜃𝜎𝜎𝑇𝑇⁄ , (14b) 
 

where 𝜎𝜎𝑇𝑇 – yield strength; 
𝑘𝑘𝑟𝑟 and 𝑘𝑘𝜃𝜃 – coefficients of sensitivity of residual stresses to the yield strength of the material. 
The functions 𝛽𝛽(𝑍𝑍),𝜃𝜃𝑟𝑟(𝑍𝑍),𝜃𝜃𝜃𝜃(𝑍𝑍) are arbitrary, but based on physical meaning it is necessary 

to demand that: 
Type of the valve determines the function of the τ againts time. In this study the function of 

the time τ is expressed in the following equation (Purohit et al., 2017; Gariépy et al., 2017): 
 

lim
𝑟𝑟→∞

𝛽𝛽(𝑍𝑍) = 0 ; (15a) 
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lim
𝑟𝑟→∞

𝜃𝜃𝑟𝑟(𝑍𝑍) = 0 ; (15b) 
  

lim
𝑟𝑟→∞

𝜃𝜃𝜃𝜃(𝑍𝑍) = 0 (15c) 
 

Figure 2 schematically shows the distribution of intensity of load and residual stresses in the area 
of prints, which are calculated from formulas (13) and (14). These formulas reflect the qualitative 
picture of the distribution of residual stresses. 
 

 
Figure 2. Stress distribution in the reference area 

 
We expand the function (13) into the Taylor series. 
 

𝜎𝜎𝑢𝑢 = 𝛽𝛽(𝑍𝑍) �1 + �(−1)2
1
𝑛𝑛!
Ɛ𝑛𝑛𝑟𝑟2𝑛𝑛� (16) 

 
 

If the yield stress is subject to the condition  
 

𝜎𝜎𝑇𝑇 ≤ 𝜎𝜎𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚, (17) 
 

then in Equation (16) we can drop all terms except the first with a small error, as a result we 
obtain: 
 

𝜎𝜎𝑢𝑢 = 𝛽𝛽(𝑍𝑍)[1 − Ɛ𝑟𝑟2] (18) 
 
Using the expression in Equation (18) we find the current radius of the hardening area: 
 

𝜎𝜎𝑇𝑇��� = 𝛽𝛽(𝑍𝑍)[1 − Ɛ𝑙𝑙2], (19) 
 
Hence 
 

𝑙𝑙2 =
1
Ɛ

(1 −
𝜎𝜎𝑇𝑇���
𝛽𝛽(𝑍𝑍)) (20) 
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Now, taking into account equation (18), we obtain: 
 

𝐹𝐹(𝑍𝑍, 𝑙𝑙) = �𝛼𝛼𝛽𝛽(𝑍𝑍)𝑟𝑟(1 − Ɛ𝑟𝑟2)𝑑𝑑𝑟𝑟 = 𝛼𝛼𝛽𝛽(𝑍𝑍)
𝑙𝑙

0

𝑙𝑙2 �
1
2
−
Ɛ𝑙𝑙2

4
�, (21) 

 
While taking into account equation (19): 
 

𝐹𝐹(𝑍𝑍, 𝑙𝑙) = 𝛼𝛼𝛽𝛽(𝑍𝑍)
1
4Ɛ

�1 −
𝜎𝜎𝑇𝑇���
𝛽𝛽(𝑍𝑍)� �1 +

𝜎𝜎𝑇𝑇���
𝛽𝛽(𝑍𝑍)� (22) 

 
Further, we take the integrals for 𝐹𝐹𝑟𝑟 and 𝐹𝐹𝜃𝜃 
 

𝐹𝐹𝑟𝑟 = 2𝜋𝜋� 𝑟𝑟𝜃𝜃𝑟𝑟(𝑍𝑍)(1 − 𝜇𝜇𝑟𝑟𝑟𝑟2 ) 𝑘𝑘𝑟𝑟𝜎𝜎𝑇𝑇���⁄
𝑅𝑅

0

(𝑍𝑍)𝑑𝑑𝑟𝑟 (23) 

 
Obviously, in order to take this integral, it is necessary to specify the limits of integration. The 
radius of integration 𝑅𝑅 will be found from the expression: 
 

𝜃𝜃𝑟𝑟(𝑍𝑍)( 1 − 𝜇𝜇𝑟𝑟𝑟𝑟2 ) 𝑘𝑘𝑟𝑟𝜎𝜎𝑇𝑇���⁄ = 0,   (24) 
 
hence: 
 

𝑅𝑅 = �
1
𝜇𝜇𝑟𝑟

   (25) 

 
Integrating (23) while taking into account (25), we obtain: 
 

𝐹𝐹𝑟𝑟(𝑍𝑍, 𝑙𝑙) =
𝜃𝜃𝑟𝑟(𝑍𝑍)

4𝜇𝜇𝑟𝑟𝑘𝑘𝑟𝑟𝜎𝜎𝑇𝑇���(𝑍𝑍)
 (26) 

 
Obviously, by carrying out similar actions for 𝐹𝐹𝜃𝜃 we obtain: 
 

𝐹𝐹𝜃𝜃(𝑍𝑍, 𝑙𝑙) =
𝜃𝜃𝜃𝜃(𝑍𝑍)

4𝜇𝜇𝜃𝜃𝑘𝑘𝜃𝜃𝜎𝜎𝑇𝑇���(𝑍𝑍)
   (27) 

 
We now substitute the obtained expression in equations (22), (26), (27) into equation (3). 
 

𝑑𝑑𝜎𝜎𝑇𝑇
∑������(𝑟𝑟, 𝑡𝑡)
𝑑𝑑𝑡𝑡

= 2𝜋𝜋𝜋𝜋 �𝛼𝛼𝛽𝛽(𝑍𝑍)
1
4Ɛ

�1 −
𝜎𝜎𝑇𝑇2���

𝛽𝛽2(𝑍𝑍) −
1
2Ɛ

�1 −
𝜎𝜎𝑇𝑇���
𝛽𝛽(𝑍𝑍)��� ; (28a) 
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𝑑𝑑𝜎𝜎𝑋𝑋
∑ост�������

𝑑𝑑𝑡𝑡
=

2𝜋𝜋
𝜋𝜋

(
𝜃𝜃𝑟𝑟(𝑍𝑍)

4𝜇𝜇𝑟𝑟𝑘𝑘𝑟𝑟𝜎𝜎𝑇𝑇���
+

𝜃𝜃𝜃𝜃(𝑍𝑍)
4𝜇𝜇𝜃𝜃𝑘𝑘𝜃𝜃𝜎𝜎𝑇𝑇���

) (28b) 

 
We now consider in more detail the first differential equation, since it does not depend on 𝜎𝜎(𝑍𝑍,𝑡𝑡)

∑ост, 
then it can be solved separately. For the convenience of the solution, we introduce the following 
coefficients: 
 

𝑘𝑘 = 2𝜋𝜋𝜋𝜋;    𝑎𝑎 =
𝑘𝑘(𝑟𝑟 − 𝛼𝛼)
4Ɛ𝛽𝛽(𝑍𝑍) ;     𝑏𝑏 =

𝑘𝑘
2Ɛ

;     𝑐𝑐 =
𝛼𝛼𝑘𝑘𝛽𝛽(𝑍𝑍)
4Ɛ

   (29) 

 
Then the first equation (28) is transformed as follows: 
 

𝑑𝑑𝜎𝜎�𝑇𝑇(𝑟𝑟, 𝑙𝑙)
𝑑𝑑𝑡𝑡

= 𝑎𝑎𝜎𝜎𝑇𝑇2���(𝑟𝑟, 𝑡𝑡) − 𝑏𝑏𝜎𝜎�𝑇𝑇(𝑟𝑟, 𝑡𝑡) + 𝑐𝑐 (30) 

 
We shall seek a solution of (30) in the form of: 
 

𝜎𝜎�𝑇𝑇 = 𝑦𝑦1 +
1
𝑦𝑦

,   (31) 

 
where 𝑦𝑦1 – particular solution. 
 
We assume that 𝑦𝑦1 is a certain value that does not depend on the parameter 𝑡𝑡. 
 

𝑦𝑦1 = 𝑌𝑌 (32) 
 
Then substituting equation (32) into equation (31) we obtain: 
 

𝑎𝑎𝑌𝑌2 + 𝑏𝑏𝑌𝑌 + 𝑐𝑐 = 0   (33) 
 
Solving this equation for 𝑌𝑌 we obtain two roots: 
 

𝑌𝑌1,2 =
𝛽𝛽(𝑍𝑍)
2 − 𝑎𝑎

(1 ± �1 − 𝑎𝑎(2 − 𝑎𝑎) (34) 

 
Now (30) it can be reduced to a linear differential equation: 
 

𝑑𝑑𝑦𝑦�
𝑑𝑑𝑡𝑡

+ (2𝑎𝑎𝑌𝑌 − 𝑏𝑏)𝑦𝑦� = −𝑎𝑎 (35) 

 
Substituting here (34) and taking into account (28), (29), we obtain the equation: 
 

𝑑𝑑𝑦𝑦�
𝑑𝑑𝑡𝑡

+
𝑘𝑘
2Ɛ

(𝐴𝐴0 − 1)𝑦𝑦� +
𝑘𝑘(𝑟𝑟 − 𝑎𝑎)
4𝛽𝛽(𝑍𝑍)Ɛ

= 0, (36) 
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where 
 

𝐴𝐴0 = 1 ± �1 − 𝑎𝑎(2 − 𝑎𝑎)   (37) 
 
For simplicity, suppose that the material is ideally hardened, then  𝛼𝛼 = 1 and (37) is transformed 
as follows: 
 

𝑑𝑑𝑦𝑦�
𝑑𝑑𝑡𝑡

+
𝑘𝑘

4𝛽𝛽(𝑍𝑍)Ɛ
= 0 (38) 

 
Integrating (38), we obtain the expression: 
 

𝑦𝑦� = −(
𝑘𝑘𝑡𝑡

4𝛽𝛽(𝑍𝑍)Ɛ
+ 𝑐𝑐1)   (39) 

 
Then (31) takes the following form: 
 

𝜎𝜎𝑇𝑇 = 𝛽𝛽(𝑍𝑍) −
1

𝑘𝑘𝑡𝑡
4𝛽𝛽(𝑍𝑍)Ɛ + 𝑐𝑐1

   (40) 

 
The constant 𝑐𝑐1 is found from the boundary condition: 
 

𝜎𝜎�𝑇𝑇|𝑡𝑡=0 = 𝜎𝜎𝑇𝑇исх; (41a) 
 

𝜎𝜎𝑇𝑇(𝑍𝑍, 𝑡𝑡) = 𝛽𝛽(𝑍𝑍) −
1
𝑐𝑐1

; (41b) 

 
hence 𝑐𝑐1 is found: 
 

𝑐𝑐1 =
1

−𝜎𝜎𝑇𝑇исх + 𝛽𝛽(𝑍𝑍)    (42) 

 
Substituting (42) into (41), we obtain: 
 

𝜎𝜎𝑇𝑇 = 𝛽𝛽(𝑍𝑍) −
1

𝑘𝑘𝑡𝑡
4𝛽𝛽(𝑍𝑍)Ɛ + 1

𝛽𝛽(𝑍𝑍) − 𝜎𝜎𝑇𝑇исх
    (43) 

 
Study the solution obtained by us. If the hardening time increases, then: 𝜎𝜎𝑇𝑇(𝑍𝑍, 𝑡𝑡) →  𝛽𝛽(𝑍𝑍) in the 
limit: 
 

lim
𝑡𝑡→∞

𝜎𝜎𝑇𝑇(𝑍𝑍, 𝑡𝑡) = 𝛽𝛽(𝑍𝑍) (44) 
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Now consider the relationship between residual stresses and deflection of control plates ∆𝑓𝑓. 
 
For simplicity, we take in (30) that 𝜇𝜇𝑟𝑟 = 𝜇𝜇𝜃𝜃 , 𝑘𝑘𝑟𝑟 = 𝑘𝑘𝜃𝜃 , then we obtain: 
 

𝑑𝑑𝜎𝜎𝑋𝑋
∑ост�������(𝑍𝑍, 𝑡𝑡)
𝑑𝑑𝑡𝑡

=
2𝜋𝜋
𝜋𝜋

(
𝜃𝜃𝑟𝑟(𝑍𝑍) − 𝜃𝜃𝜃𝜃(𝑍𝑍)

4𝜇𝜇𝑘𝑘𝜎𝜎𝑇𝑇(𝑍𝑍, 𝑡𝑡)
)   (45) 

 
We substitute into the equation (45): 
 

𝑑𝑑 =
2𝜋𝜋
𝜋𝜋
�
𝜃𝜃𝑟𝑟(𝑍𝑍) − 𝜃𝜃𝜃𝜃(𝑍𝑍)

4𝜇𝜇𝑘𝑘
�,   (46) 

 
then the equation takes the form: 
 

𝑑𝑑𝜎𝜎∑ост�������(𝑍𝑍, 𝑡𝑡)
𝑑𝑑𝑡𝑡

=
𝑑𝑑

𝜎𝜎𝑇𝑇(𝑍𝑍, 𝑡𝑡)
   (47) 

 
Equation (40) is reduced to the form: 
 

𝜎𝜎𝑇𝑇 =
𝑘𝑘𝛽𝛽(𝑍𝑍)(𝛽𝛽(𝑍𝑍) − 𝜎𝜎𝑇𝑇исх)𝑡𝑡 + 4𝛽𝛽(𝑍𝑍)Ɛ𝜎𝜎𝑇𝑇исх

𝑘𝑘𝑡𝑡(𝛽𝛽(𝑍𝑍) − 𝜎𝜎𝑇𝑇исх) + 4𝛽𝛽(𝑍𝑍)Ɛ
 (48) 

 
Taking into account (48), the equation (47) is becomes: 
 

𝑑𝑑𝜎𝜎𝑋𝑋
∑ост�������(𝑍𝑍, 𝑡𝑡)
𝑑𝑑𝑡𝑡

=
𝑑𝑑[𝑘𝑘𝑡𝑡(𝛽𝛽(𝑍𝑍) − 𝜎𝜎𝑇𝑇исх) + 4𝛽𝛽(𝑍𝑍)Ɛ]
𝑘𝑘𝑡𝑡(𝛽𝛽(𝑍𝑍) − 𝜎𝜎𝑇𝑇исх) + 4𝛽𝛽(𝑍𝑍)𝜎𝜎𝑇𝑇исхƐ

 (49) 

 
We make the substitution in the equation (49): 
 

𝑎𝑎 = 𝑘𝑘(𝛽𝛽(𝑍𝑍) − 𝜎𝜎𝑇𝑇исх);𝑏𝑏 = 4𝛽𝛽(𝑍𝑍)Ɛ; (50a) 
 

𝑓𝑓 = 𝑘𝑘𝛽𝛽(𝑍𝑍) ∙ (𝛽𝛽(𝑍𝑍) − 𝜎𝜎𝑇𝑇исх);𝑔𝑔 = 4𝛽𝛽(𝑍𝑍)𝜎𝜎𝑇𝑇исхƐ; (50b) 
 

𝑑𝑑𝜎𝜎𝑋𝑋
∑ост�������

𝑑𝑑𝑡𝑡
= 𝑑𝑑

𝑎𝑎𝑡𝑡 + 𝑏𝑏
𝑓𝑓𝑡𝑡 + 𝑔𝑔

 (50c) 
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Figure 3. Dependence of residual stresses on hardening time 

 
We shall carry out a qualitative analysis of equation (50). At the initial time, the increment of 
residual stresses should be maximal, since there is no hardening, in the future it should decrease 
to a certain limit, which can be easily found from the relation in equation (50) (Figure 3). 
 

lim
𝑡𝑡→∞

𝑑𝑑𝜎𝜎(𝑍𝑍, 𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑑𝑑
𝑎𝑎
𝑓𝑓

   (51) 

 
The presence of this limit is easily explained by the existence of a maximum hardening limit: 
 

𝜎𝜎𝑇𝑇 < 𝜎𝜎𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,   0 < 𝑡𝑡 < ∞   (52) 
 
This limit exists in many materials and is explained by its physical properties. We integrate now 
to equate to (50) 
 

𝜎𝜎𝑋𝑋
∑ост������� = 𝑑𝑑 �

𝑎𝑎𝑡𝑡
𝑓𝑓

+
𝑓𝑓𝑏𝑏 − 𝑎𝑎𝑔𝑔
𝑓𝑓2

(ln(𝑓𝑓𝑡𝑡 + 𝑔𝑔) − ln𝑔𝑔)� (53) 

 
The analysis shows that the calculated curve can be divided into 3 phases: 

I. – fast initial growth phase; 
II. – transitional period; 
III. – saturation phase.  

 
Since the solution of the adaptability equations at each i-th step of the integration requires the 
solution of the one-shot problem, it is most advantageous to apply the interactive solution 
methods, since the resolution of the equations at each new step begins with the previous solution, 
which increases the computational speed. In particular, here we have chosen a two-layer 
integration scheme for solving the problem. The main decision points listed below. 
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1) Based on the preset depth of ball penetration, determine the contact radius: 

𝐵𝐵 = �𝑅𝑅ш ∙ 𝐷𝐷𝑒𝑒 ,   (54) 
 
where    𝑅𝑅ш – ball radius; 

𝐷𝐷𝑒𝑒 – depth of implementation. 
2) Determine the number of nodes N1 in the contact area and check whether it falls into 

the required range, if not, the calculation is terminated. This is done to ensure that the 
number of grid nodes does not exceed the specified range, and, on the other hand, that 
the accuracy of the solution is sufficient. 

3) Determine the coordinates of the grid nodes X (1), Y (1). 
4) Determine the force of the ball pressing: 

𝑃𝑃 =
8𝜎𝜎0𝐵𝐵𝐷𝐷𝑒𝑒

3(1 − 𝑉𝑉)
, (55) 

 
where 𝜎𝜎0 – initial shear modulus. 

5) By the given force 𝑃𝑃 and the radius of the print 𝐵𝐵 determine the elastic stresses 
according to: 
 

𝜎𝜎𝑟𝑟
упр = 𝜎𝜎𝑟𝑟

упр(𝑟𝑟,𝑍𝑍); 𝜎𝜎𝑍𝑍
упр = 𝜎𝜎𝑍𝑍

упр(𝑟𝑟,𝑍𝑍);𝜎𝜎𝜃𝜃
упр = 𝜎𝜎𝜃𝜃

упр(𝑟𝑟,𝑍𝑍); (56) 
 

6) On the basis of (55) find the boundary conditions: 
on the axis  𝑟𝑟 = 0 we obtain: 
 

𝜎𝜎𝑟𝑟 = 𝜎𝜎𝜃𝜃 = 𝐾𝐾 �(1 + 𝑉𝑉) �1 − 𝑍𝑍𝑎𝑎𝑟𝑟𝑐𝑐𝑡𝑡𝑔𝑔
1
𝑍𝑍
−

1
2(1 + 𝑍𝑍2)�� ; (57a) 

 

𝜎𝜎𝑍𝑍 = 𝐾𝐾
1

1 + 𝑍𝑍2
;  𝜏𝜏 = 0 (57b) 

 
On the surface 𝑍𝑍 = 0 we have 𝜏𝜏 = 0 
 

𝜎𝜎𝑟𝑟|𝑟𝑟 ≤ 𝑏𝑏 = 𝐾𝐾[�1 − 𝑟𝑟2 +
1 − 2𝑉𝑉

3𝑟𝑟2
��1 − 𝑟𝑟2)3 2� − 1�� ; (58a) 

 

𝜎𝜎𝜃𝜃|𝑟𝑟 ≤ 𝑏𝑏 = 𝐾𝐾[�1 − 𝑟𝑟2 +
1 − 2𝑉𝑉

3𝑟𝑟2
��1 − 𝑟𝑟2)3 2� − 1�� ; (58b) 

 

𝜎𝜎𝑍𝑍|𝑟𝑟 ≤ 𝑏𝑏 = 𝐾𝐾�1 − 𝑟𝑟2; (58a) 
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𝜎𝜎𝜃𝜃|𝑟𝑟 > 𝑏𝑏 = −𝜎𝜎𝑟𝑟,             𝜎𝜎𝑍𝑍|𝑟𝑟 > 𝑏𝑏 = 0 (58b) 
 

7) Find the boundary conditions on the lateral face: 
 

𝐹𝐹𝐺𝐺𝐺𝐺(𝑏𝑏,𝑍𝑍) = 𝜎𝜎𝑟𝑟
упр(𝑏𝑏,𝑍𝑍); (59a) 

 

𝐹𝐹𝜏𝜏𝐺𝐺(𝑏𝑏,𝑍𝑍) = 𝜏𝜏упр(𝑏𝑏,𝑍𝑍); (59b) 
 

𝐹𝐹𝐺𝐺𝐺𝐺(𝑟𝑟,𝐻𝐻) = 𝜎𝜎𝑟𝑟
упр(𝑟𝑟,𝐻𝐻); (59c) 

 

𝐹𝐹𝜏𝜏𝐺𝐺(𝑟𝑟,𝐻𝐻) = 𝜏𝜏упр(𝑟𝑟,𝐻𝐻), (59d) 
 
where 𝑏𝑏, 𝐻𝐻 – height and width of the calculation area. 
 

8) On the basis of (58), find the elastic displacements at the nodes. 
9) To solve the interatomic problem, take the calculated elastic stresses as initial conditions, 

in addition, assume at the boundary that the boundary conditions correspond to the 
conditions found from the elastic solution (58) and (59) 

10) Determine the intensity of stresses taking into account the residual stresses  𝜎𝜎𝑋𝑋ост�����: 
 

𝜎𝜎𝑢𝑢 =
1
√2

�(𝜎𝜎𝑟𝑟 + 𝜎𝜎𝑋𝑋ост����� − 𝜎𝜎𝑍𝑍)2 + (𝜎𝜎𝜃𝜃 + 𝜎𝜎𝑋𝑋ост����� − 𝜎𝜎𝑍𝑍)2 + 6𝜏𝜏2   (60) 

 

 

Figure 4. Diagram of the method of variable elasticity parameters 
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To calculate the stress state in the plastic region, we use the variable elasticity method. 
According to this, the shear modulus 𝜎𝜎 and Poisson's ratio 𝑉𝑉 at each point of the area 
are calculated (Figure 4). By 𝜎𝜎∗ and 𝑉𝑉∗ their values depending on the value 𝜎𝜎𝑢𝑢 are 
indicated. 𝜎𝜎 and 𝑉𝑉 are the values from the previous iteration. Find the intensity of the 
deformations by the formula: 
 

Ɛ𝑢𝑢 =
𝜎𝜎𝑢𝑢
3
�

1
𝜎𝜎

+
1 − 2𝑉𝑉
𝐸𝐸

� (61) 

 
Further, we find the intensity along the deformation curve: 
 

𝜎𝜎𝑢𝑢∗ = 𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛Ɛ𝑢𝑢, (62) 
 
where 𝑛𝑛 – number of the segment of the broken line, which approximates the curve, the 
deformation. After this, we determine the new value of the shear modulus by the 
formula. 
 

𝜎𝜎∗ =
1

3Ɛ𝑢𝑢
𝜎𝜎𝑢𝑢∗

+ 1 − 2𝑉𝑉
𝐸𝐸

 (63) 

 
11) Find the deformations from the displacements, then calculate the stresses at the nodes 

from the obtained elastic deformations and the recalculated elastic modulus. 

𝜎𝜎𝑟𝑟 = 𝜆𝜆𝜃𝜃 + 2𝜎𝜎Ɛ𝑟𝑟; (64a) 
 

𝜎𝜎𝜃𝜃 = 𝜆𝜆𝜃𝜃 + 2𝜎𝜎Ɛ𝜃𝜃;   (64b) 
 

𝜎𝜎𝑍𝑍 = 𝜆𝜆𝜃𝜃 + 2𝜎𝜎Ɛ𝑍𝑍 (64c) 
 

12) To determine the displacements at the grid nodes, it is necessary to compile a system of 
linear equations with fixed elastic parameters: 
 

𝐴𝐴𝑌𝑌 = 𝐹𝐹, (65) 
 
where 𝑌𝑌 – array of radial and axial displacements; 
𝐹𝐹 – boundary conditions, which are determined from the equations (59) 
a. In order to find the matrix A, it is necessary to express the equilibrium equations 

in the form of a displacement function. Substituting (64) into the equilibrium 
equations, we obtain a system of second-order differential equations: 
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∇2𝑢𝑢 +
1

1 − 2𝑉𝑉
∙
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑉𝑉
𝑑𝑑𝑦𝑦

+
𝑑𝑑𝜔𝜔
𝑑𝑑𝑟𝑟
� +

𝐹𝐹𝑚𝑚
𝜇𝜇

= 0; (66a) 

 

∇2𝑉𝑉 +
1

1 − 2𝑉𝑉
∙
𝑑𝑑
𝑑𝑑𝑦𝑦

�
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑉𝑉
𝑑𝑑𝑦𝑦

+
𝑑𝑑𝜔𝜔
𝑑𝑑𝑟𝑟
� +

𝐹𝐹𝑦𝑦
𝜇𝜇

= 0; (66b) 

 

∇2𝜔𝜔 +
1

1 − 2𝑉𝑉
∙
𝑑𝑑
𝑑𝑑𝑟𝑟
�
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑉𝑉
𝑑𝑑𝑦𝑦

+
𝑑𝑑𝜔𝜔
𝑑𝑑𝑟𝑟
� +

𝐹𝐹𝑟𝑟
𝜇𝜇

= 0 (66c) 

 
The derivatives in (66) are found by three points: 
 

𝑦𝑦′(𝑑𝑑1) =
1
𝐻𝐻

(−𝑦𝑦3 + 4𝑦𝑦2 − 3𝑦𝑦1); (67a) 

 

𝑦𝑦′(𝑑𝑑𝑖𝑖) =
1
𝐻𝐻

(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖−1), 1 < 𝑖𝑖 < 𝑛𝑛; (67b) 

 

𝑦𝑦′(𝑑𝑑𝑛𝑛) =
1
𝐻𝐻

(3𝑦𝑦𝑛𝑛 − 4𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛−2), (67c) 

 
here 𝑦𝑦𝑖𝑖 = 𝑦𝑦(𝑑𝑑𝑖𝑖), 𝐻𝐻 – double grid spacing. 
Substituting the expression (67) into the equilibrium equation (66) and 
representing it as the product of matrices (65), we define the matrix A. 

b. To solve the equation (65), we use the three-layer iterative method. According to 
this method, it is necessary to calculate the remainder by the formula: 
 

𝑟𝑟𝑘𝑘 = 𝐴𝐴𝑌𝑌𝑘𝑘 − 𝐹𝐹 (68) 
 

c. Calculate the vector column. 𝐴𝐴𝑟𝑟𝑘𝑘. For this we use the equations (65) and (66), but 
instead of displacement we substitute the remainder. 

d. Calculate the coefficients A, Е, F and if 𝐾𝐾 > 1 , then calculate the coefficients B, C, 
D: 
 

𝐴𝐴 = (𝐴𝐴𝑟𝑟𝑘𝑘, 𝑟𝑟𝑘𝑘);  𝐵𝐵 = (𝐴𝐴𝑟𝑟𝑘𝑘, 𝑟𝑟𝑘𝑘−1); (69a) 
 

𝐶𝐶 = (𝑟𝑟𝑘𝑘, 𝑟𝑟𝑘𝑘 − 𝑟𝑟𝑘𝑘−1);  𝐷𝐷 = (𝑟𝑟𝑘𝑘−1, 𝑟𝑟𝑘𝑘 − 𝑟𝑟𝑘𝑘−1); (69b) 
 

𝐸𝐸 = (𝐴𝐴𝑟𝑟𝑘𝑘,𝐴𝐴𝑟𝑟𝑘𝑘);  𝐹𝐹 = (𝑟𝑟𝑘𝑘, 𝑟𝑟𝑘𝑘); 𝐹𝐹𝑠𝑠𝑡𝑡 = (𝑟𝑟𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1) (69c) 
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e. Calculate the new vector of the solution Y at the -th integration by the the formulas: 
 

𝑌𝑌(1) = 𝑌𝑌(0) − 𝜏𝜏 ∙ 𝑟𝑟0,при 𝑘𝑘 = 1 (70a) 
 

𝑌𝑌(𝑘𝑘+1) = 𝑌𝑌(𝑘𝑘−1) + 𝛼𝛼(𝑌𝑌(𝑘𝑘) − 𝑌𝑌(𝑘𝑘−1)) − 𝛼𝛼𝜏𝜏𝑟𝑟𝑘𝑘,при 𝑘𝑘 ≥ 2, (70b) 
 

where 
 

𝛼𝛼𝑘𝑘 =
(𝐴𝐴 − 𝐵𝐵)𝐵𝐵 − 𝐷𝐷𝐸𝐸

(𝐶𝐶 − 𝐷𝐷)𝐸𝐸 − (𝐴𝐴 − 𝐵𝐵)2
;  𝛼𝛼1 = 1; (71a) 

 

𝜏𝜏1 =
𝐴𝐴
𝐸𝐸

;  𝜏𝜏𝑘𝑘 =
𝐵𝐵
𝐸𝐸𝛼𝛼𝑘𝑘

+
𝐴𝐴 − 𝐵𝐵
𝐸𝐸

, 𝑘𝑘 ≥ 2    (71b) 

 
Since the contact task is being solved, it is necessary to fix the movement of the 
nodes in the contact area. In order for their values to remain unchanged in the 
iteration process, the discrepancy in these nodes is forcibly equated to zero, which 
leads to automatic fixation of displacements in these nodes. 
The iterative process proceeds until the residual is sufficiently small, namely: 
 

�
𝐹𝐹
𝐹𝐹𝑠𝑠𝑡𝑡

− 1� < Ɛ, (72a) 

 
where Ɛ – relative accuracy. 

13) Calculate the new elastic modulus from formulas (61), (62), (63). Find the change in the 
elastic modulus at the (𝐾𝐾 + 1) iteration. 
Further we check the condition: ∆𝐸𝐸 < ∆𝐸𝐸𝑔𝑔, where ∆𝐸𝐸 – maximum increment of the 
shear modulus; ∆𝐸𝐸𝑔𝑔 – maximum increment error. 
If the condition is not fulfilled, go to (10) and repeat the calculation again, otherwise go 
to the next step. This cycle limits the solution of the elastoplastic problem for a given 
depth of ball penetration. 

14) Calculate the energy Э of the half-space; 
 

Э = �(Эо + Эф)𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑑𝑑𝑟𝑟
𝑉𝑉

; (73a) 

 

Эо =
1 − 2𝑉𝑉∗

6𝐸𝐸∗
(𝜎𝜎𝑟𝑟 + 𝜎𝜎𝜃𝜃 + 𝜎𝜎𝑍𝑍)2; (73b) 
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Эф =
𝜎𝜎𝑢𝑢Ɛ𝑢𝑢

2
, (73c) 

 
where     Эо – bulk strain energy; 

Эф – forming energy. 
15) Check whether the kinetic energy of the ball 𝐴𝐴𝑜𝑜 is equal to the energy of the half-space. 

If not, go to step 17, otherwise go to the next step. 
16) Define a new depth of the introduction of balls into a half-space, while: 

 

ℎ = ℎ + ∆ℎ, if  Э < 𝐴𝐴𝑜𝑜; (74a) 
 

ℎ = ℎ − ∆ℎ, if Э > 𝐴𝐴𝑜𝑜, (74b) 
 
where    ℎ – penetration depth of the ball; 

∆ℎ – increment of penetration depth. 
To achieve the convergence, the step is calculated using the following the formula: 
 

If Э(ℎ + ∆ℎ) > 𝐴𝐴𝑜𝑜 and Э(ℎ) < 𝐴𝐴𝑜𝑜 then ∆ℎ = ∆ℎ 2⁄  (75) 
 
After recalculating the depth of implementation, go to step 1 of the algorithm. 

17) Calculate the residual stresses by the formula: 
 

𝜎𝜎𝑖𝑖𝑖𝑖ост = 𝜎𝜎𝑖𝑖𝑖𝑖𝐻𝐻 − 𝜎𝜎𝑖𝑖𝑖𝑖
упр,   (76) 

 
where     𝜎𝜎𝑖𝑖𝑖𝑖𝐻𝐻 – load stresses; 

𝜎𝜎𝑖𝑖𝑖𝑖
упр – stresses, discharges, obtained from the elastic solution. 

The solutions obtained from the algorithm are based on the fact that at a sufficiently 
large distance from the contact zone the elastoplastic solution converges to the elastic 
solution. This assumption allows to limit the calculated area to a cylinder of the radius 
𝐵𝐵 and the height 𝐻𝐻, and at the nodes located on the outer boundary of the cylinder, the 
displacements obtained from the elastic solution. 
Figure 5 shows the distribution of stresses with Кпроп = 1, the ball radius 𝑅𝑅ш =
1,25 𝑚𝑚𝑚𝑚. The figure shows the example of the residual stress distribution with a 
dummy mechanical property of the steel materials. For our experiment, the comparable 
stress would be the right bottom stress distribution. The overall computation can then 
be plotted alongside with experiment as shown in Figure 6. 
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Figure 5. Results of calculation of stresses for a single print 

 

 
Figure 6. Results of analytical (dash line) and experimental (shown as error bars) 
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EXPERIMENT 
 
The experiment was done with the appropriate shot ball size to mimic the analysis until 
saturation. The Almen strip measure was 0.55 mm.  The coverage of the shot peening was 
approximately 98%. This is to mimic what is usually called saturated shot peening. Beyond this 
coverage, more shot peening amount that is put into the system will not affect the residual stress 
significantly. The samples were than profiled with an x-ray diffraction device. The measurement 
of residual stress with x-ray diffraction is based on measurements of changes in crystal lattice 
spacing, which manifest themselves as shifts in angular position of respective diffraction peaks, 
according to Bragg’s law: 
 

𝑛𝑛 ∙ 𝜆𝜆 = 2𝑑𝑑 sin𝜃𝜃 (77) 
 
where 

𝑛𝑛 is the reflection order 
𝜆𝜆 the radiation wavelength 
𝑑𝑑 the plane spacing, and  
𝜃𝜃 is the diffraction angle. 

 
The strain can then be computed by: 
 

𝜀𝜀 = �
𝑑𝑑 − 𝑑𝑑0
𝑑𝑑0

� (78) 

 
where 

𝜀𝜀 is the strain in a particular direction 
𝑑𝑑 the stressed, and d0 the unstressed interplanar spacing 

 
   Since the stress in this case is only a conversion of the strain and the strain is only obtained 
using the full width half max approach, what we obtained was only a value with error bar. In our 
case, we measurement was performed to obtain the stress in the surface direction. Figure 6 shows 
the results. The compressive residual stress produces more than 500 MPa at the surface, while 
the peak depth of compressive residual stress was approximately at 0.19 mm. This trend is similar 
with  the analytical results as well as the finding of other researchers (Gariépy et al., 2017). 
 
DISCUSSIONS 
 
The analysis and the experiment were in a quite good agreement. There is some minor 
disagreement at certain area such as the depth of the crossing line where the residual stress 
change from compressive to tension. However, since this is our first attempt to academically 
materialize the concept of the shot peening in calculation such discrepancy is highly anticipated. 
Other researchers also pursue similarly (Higounenc, 2005; Chang et al., 2008; Hu et al., 2017; 
Bianchetti et al., 2019). 
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   Among the practitioners, the saturated residual stress at the surface is usually predicted as: 
 

Surface 𝜎𝜎𝑅𝑅𝑅𝑅[MPa] = −276 
𝐴𝐴ℎ
𝑅𝑅

+ 7.1 𝛾𝛾𝑅𝑅 − 0.59𝜎𝜎𝑝𝑝𝑟𝑟𝑒𝑒 − 451 (79) 

 
At the surface, where 𝐴𝐴ℎ is the arc height and R is the radius of shot, while  𝛾𝛾𝑅𝑅 is the retain 
austenite. For the peak, usually it becomes 
 

Max.𝜎𝜎𝑅𝑅𝑅𝑅[MPa] = −172 
𝐴𝐴ℎ
𝑅𝑅

+ 7.1 𝛾𝛾𝑅𝑅 − 0.54𝜎𝜎𝑝𝑝𝑟𝑟𝑒𝑒 − 882 (80) 

 
the unit is in MPa. The above empirical equations are quite famous in the industrial world 
although it is lack of scientific basis. Based on equations (79) and (80), and our measurement of 
Almen arc-height, our prediction of surface residual stress would be -530MPa. The peak residual 
stress would be -917MPa. Again, direct comparison of the prediction using these empirical 
equations with experiment and with computational results are still difficult. We can only say that 
the trend is similar. However, since this is a first attempt in bring the “black art” into academic 
world, such difficulty was expected. The most important thing in here is the analytical solution is 
now derived. This solution is off course far from perfect. It has a lot of room for improvement. 
  
CONCLUSIONS 
 
Through analysis and experiment, it is proved that shot peening can be brought into academic 
domain instead of staying in industry as a black art. This research proved that academically this 
field has so much promise and potential to develop further. Simple analytical approach using 
classical solid mechanics concept leads to the prediction of the residual stress that is verifiable 
through experiment. Using the data from the experiment as a value to achieve, the analysis still 
has a room for improvement. 

The process can be defined as work hardening to the surface of components by propelling 
streams of spherical shots to the surface. The surface layer of material yields plastically to generate 
residual compressive stress. Among the practitioners, it has been known well that many 
parameters influence the efficiency of shot peening process. These are the peening coverage, 
saturation, shot material, shot size, speed, and peening time. 
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