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 ABSTRACT  
Numerical simulation is developed to investigate the effect of inclusion on 
crack propagation. In this study, the crack growth is modeled using 
extended finite element method (XFEM). Two-dimensional rectangular plate 
with single inclusion embedded off-centered is modeled. The specimen is 
subjected to uniaxial tension. The dimensions of the specimen are 40 mm x 
80 mm and the radius of the inclusion is 10 mm. The specimen is pre-
cracked with the length of an edge crack is 5 mm. The motion of the crack is 
modeled by XFEM based on traction-separation cohesive behavior for 2D 
mixed mode problem. In addition, enrichment procedure is used to 
implicitly determine predefined crack in XFEM framework. Two different 
inclusions, which are soft and hard inclusions, are considered on crack 
propagation scheme. The effects of soft and hard inclusions on crack 
propagation are studied and observed. The results showed that the 
trajectory of crack highly depends on inclusion inside the material. In the 
case of soft inclusion, propagation of the crack tended to approach the 
inclusion. Whereas in the case of hard inclusion, crack trajectory tended to 
move away from the inclusion. The mismatch of elastic modulus between 
inclusion and surrounded materials has significant effect on propagation of 
crack. 
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INTRODUCTION 
 
The crack propagation problem in finite element method is very challenging task, since it has to 
be modified in such way to accommodate the discontinuities caused by presence of cracks, voids 
or inclusions. The traditional finite element method is not suited for modeling crack 
propagation because at each increment of crack growth, the surrounding domains of the crack 
tip have to be remeshed in order to represent updated crack geometry precisely. 

Over the past decade, some researchers had given so much effort working on fracture. 
Various methods and computational techniques have been developed to investigate fracture in 
brittle and quasi-brittle [1]. For example, meshfree technique to model discrete crack was 
proposed by Rabczuk and Belytschko [2], [3]. Random orientation of crack’s angle and 
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arrangement can be practically solved with this method. Rabczuk and Zi [4] investigated crack 
propagation for both of static and dynamic problem with a meshfree method. Areias and 
Rabczuk [5] introduced cohesive law within thin shell models (Kirchoff-Love) in bending 
application problem.  

The extended finite element method (XFEM) to study crack propagation problem has 
received more attention from some researchers [6]–[8]. Node-based smoothed combined with 
extended finite element method has been developed by Vu-Bac et al [9]. The stress singularity at 
the crack tip can be circumvented with this technique. Phase-field using thin (Kirchoff-Love) 
shells combined with local maximum-entropy (LME) meshfree technique has been introduced 
by Amiri et al [10], while extended local maximum-entropy (XLME) complemented with 
enrichment function has been further developed [11]. 

  
LITERATURE REVIEW 
 
The cohesive zone modeling to simulate fracture process in rock materials has been presented 
by Gui et al. [12]. They considered both of elastic and inelastic displacements to control the 
fracture. Characteristic of hydraulic fracture in permeable porous materials has been 
investigated by considering continuous and discontinuous pressure [13]. The new 
computational algorithms have been proposed for fracture in brittle and ductile materials based 
on edge rotations at the crack front [14], [15] and injection of continuum elements [16]. Areias 
et al. [17] developed local remeshing method based on phase-field to study fracture behavior of 
shells and plates. 

Another computational algorithms to simulate crack growth in the materials have been 
developed using a modified screened poisson [18], tetrahedral refinement mesh based on edge 
division [19], and dual-horizon perydinamics [20], [21]. Hamdia et al. [22], [23] proposed an 
artificial neural network (ANN) along with Bayesian method to predict fracture toughness of 
polymer nanocomposites. Talebi et al. [24], [25] investigated fracture process using concurrent 
multiscale technique coupled with molecular dynamics and extended finite element.  

The multiscale method incorporating phantom node [26], [27] and an equivalent coarse 
grained model [28] to simulate crack propagation have also been developed. The coarse-grained 
(CG) model was also used to predict elastic properties of carbon nanotube (CNT) through 
molecular interaction between polymer and nanotubes [29], [30]. In addition, other 
computational techniques have also been presented, such as the particle method [31]–[33], the 
cohesive crack [34], [35], the meshfree [36]–[40], the partition of unity [41], and the 
isogeometric analysis [42]–[48]. 

Recently, computational modelings of fracture in self-healing materials are getting so 
much attention [49], [50]. Mauludin et al. [51] developed computational model of fracture in 
encapsulation-based self-healing concrete. They introduced an algorithm to generate random 
microstructures inside concrete materials. The zero thickness cohesive elements were used to 
represent potential cracks along the boundaries of elements. The effects of volume fraction of 
capsules on load carrying capacity of concrete and probability of capsules to be fractured were 
investigated. The role of interfacial strength between the capsule and the mortar matrix was 
also studied by Mauludin et al. [52], [53]. They modelled the interaction between a single 
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circular capsule with different core-shell thickness ratio and a pre-defined crack. The cohesive 
elements with bilinear traction-separation law were used to simulate crack propagation. The 
effects of interfacial fracture strength between the capsule and the mortar matrix on fracture 
probability and load carrying capacity were evaluated. 

In this study, the fracture characteristic on how an approaching crack interacts with the 
presence of inclusion is investigated numerically. The crucial aspect in this interaction is the 
change of crack path due to the existence of inclusion. A rectangular plate with an edge crack 
and single inclusion is modeled under uniaxial tension. The two types of inclusions are 
considered here, which are soft and hard inclusions. The extended finite element method 
(XFEM) is used to simulate crack growth inside specimen. The objective of this study is to 
investigate the role of soft and hard inclusions on crack trajectory. 

 
RESEARCH METHOD 
 
Geometry of the model  
 
In this section, the interaction of crack propagation in the existence of inclusions both of soft 
and hard inclusions is investigated. Two-dimensional rectangular plate with single inclusion 
embedded off-centered is modeled. The specimen is subjected to uniaxial tension. The 
dimensions of the specimen are 40 mm x 80 mm and the radius of the inclusion is 10 mm. The 
specimen is pre-cracked with the length of an edge crack is 5 mm. The schematic of the 
specimen along with the boundary and location of the inclusion is illustrated in Figure 1. 
 

 
Figure 1. Schematic view of crack-inclusion problem 
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Two types of inclusions are considered in this study based on the ratio of Young’s modulus 
between the plate and the inclusion. When the Young’s modulus of inclusion is higher than the 
plate, it calls hard inclusion. Whereas the Young’s modulus of inclusion is lower than the plate, 
it calls soft inclusion. Let R is the ratio of Young’s modulus between the plate and the inclusion, 
 

𝑅𝑅 =  
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (1) 

 
and the Poisson’s ratio between the plate and the inclusion is assumed to be constant. The 
numerical simulations are conducted for two cases, that is (1) soft inclusion with R = 10, and (2) 
hard inclusion with R = 0.1. 
The simulations of problems are conducted using ABAQUS 16.4 in plain strain condition and 
linear elastic is considered for material characteristic. In purpose for this simulation, the 
material properties for Young’s modulus and Poisson’s ratio of the plate are employed as E = 
1.0e4 (KPa) and ν = 0.33, respectively. Whereas the material properties for the inclusion follow 
the rules based on the ratio of Young’s modulus as explained previously. The specimens are 
discretized by applying 0.3 mm global mesh size to generate 4138 quadratic elements. 
 
Extended finite element method 
 
Modeling fracture process along with propagation of crack in the materials is not an easy task. 
Even though there were a lot of researches have been made to describe this complex process, 
but there is no exact method able to simulate all nature’s aspects of fracture and describe it in 
detail. The extended finite element method (XFEM) in ABAQUS 6.14 is used in this study to 
simulate crack propagation in the presence of inclusion. This extension of conventional finite 
element method was first presented by Belytschko and Black [54]. 

The concept is based on the partition of unity which incorporated local enrichment 
function into finite element calculations. Crack propagation simulations with XFEM do not need 
path definition and initial crack, as crack path is obtained as part of finite element 
approximation. The enrichment functions consist of the near-tip asymptotic function which 
capture the singularity and discontinuous function that describe the displacement jump across 
the crack surfaces. The approximation of displacement vector in partition of unity enrichment is 
[55],  
 

𝑢𝑢 = �𝑁𝑁𝐼𝐼(𝑥𝑥)[𝑢𝑢𝐼𝐼 + 𝐻𝐻(𝑥𝑥)𝑎𝑎𝐼𝐼 +
𝑁𝑁

𝐼𝐼=1

�𝐹𝐹𝛼𝛼(𝑥𝑥)
4

𝛼𝛼=1

𝑏𝑏𝐼𝐼𝛼𝛼] (2) 

 
where 𝑁𝑁𝐼𝐼(𝑥𝑥) is the nodal shape functions; 𝑢𝑢𝐼𝐼 is the nodal displacement vector; the second term 
is the product of the nodal enrichment degree of freedom vector, aI and the corresponding 
discontinuous jump function 𝐻𝐻(𝑥𝑥) across the crack surfaces; and the third term is the product 
of the nodal enrichment degree of freedom vector, 𝑏𝑏𝐼𝐼𝛼𝛼, and the corresponding elastic asymptotic 
crack-tip functions, 𝐹𝐹𝛼𝛼(𝑥𝑥). 
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The extended finite element method (XFEM) in ABAQUS 6.14 is used in this simulation to 
study crack propagation in the presence of soft and hard inclusions. Two-dimensional 
rectangular specimen subjected to uniaxial tension is considered in this study. The effects of soft 
and hard inclusions on crack trajectory are investigated. 
 
DISCUSSION 
 
The results of all numerical simulations from soft and hard inclusions can be seen in Fig. 2 and 
3. Figure 2 shows the crack propagation characteristic on the specimen when the soft inclusion 
is embedded in the materials. In the case of soft inclusion, the crack trajectory is tended to 
approach into the inclusion as soon as the crack propagates from an edge crack. 

Whereas in the case of hard inclusion, the crack trajectory is tended to deflect away from 
the inclusion as soon as the crack propagates from an edge crack. The hard inclusion made the 
propagation path moved away from the inclusion’s location as illustrated in Fig.3. These 
simulation results may be very significant in engineering materials design especially in 
predicting crack propagation in structural elements. These phenomena are in good agreement 
with the results presented by Bordas [24]. Both of results have a significantly similar in the 
crack propagation characteristics. 

    

  
(a) (b) 

Figure 2. Crack propagation interaction with soft inclusion. (a). Initial condition. (b) Final condition 
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(a) (b) 

Figure 3. Crack propagation interaction with hard inclusion. (a). Initial condition. (b). Final condition  

CONCLUSION 
 
In this paper, the effect of presence of inclusion on the crack propagation is investigated 
numerically. The extended finite element method (XFEM) based on traction-separation cohesive 
behavior in Abaqus 6.14 is used in this study. Rectangular plate in two-dimension with single 
inclusion embedded off-centered is considered in this simulation. The specimen is pre-cracked 
with an edge crack and loaded with uniaxial tension. Two different cases, which are soft and 
hard inclusions, are considered based on different ratio of Young’s modulus between the plate 
and the inclusion. The effect of presence of soft and hard inclusions on crack trajectory is 
investigated. Some conclusions can be made as follows: 
1) The mismatch in Young’s modulus between the plate and the embedded inclusion has 

significant effect on the crack trajectory of the specimen. 
2) The specimen with embedded soft inclusion tends to attract the crack trajectory into the 

inclusion as soon as the crack initiates to propagate from an edge crack. 
3) The specimen with embedded hard inclusion tends to deflect the crack trajectory away 

from the inclusion as soon as the crack initiates to propagate from an edge crack. 
The present work focused on numerical modeling of crack growth in the presence of soft 

and hard inclusions using the extended finite element method (XFEM) in Abaqus 6.14. The 
advantage of using XFEM in the case of discontinuity problem compared to the conventional 
finite element techniques has shown in this paper. The future work will focus on investigating 
the effect of fracture strength from the inclusion on crack propagation of the specimen. 
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