The Effect of Cabbage Waste Concentration and Fermentation Time on The Decaffeination of Arabica Coffee
Main Article Content
Keywords
Arabica coffee, Cabbage waste, Caffeine, Decaffeination, Lactic acid bacteria
Abstract
The purpose of this study was to determine the effect of the concentration of cabbage waste and fermentation time on the caffeine content reduction of Arabica coffee from Pangalengan. Decaffeination is carried out using a wet fermentation method using protease enzyme activity produced by lactic acid bacteria from cabbage waste. Protease enzymes can break down the slime layer on coffee beans so that caffeine is decomposed through the esterification process to become chlorogenic acid. Fermentation was carried out anaerobically in a fermenter with a capacity of ± 2L with a fermentation time of 72 hours and sampling every 6 hours. The concentration of cabbage waste ranged from 10-80% (w/w). Arabica coffee beans were tested for caffeine content (%) using a UV-Vis spectrophotometer. According to the study's findings, the caffeine level decreases as the concentration of cabbage waste increases. Meanwhile, the caffeine level decreases as fermentation time increases. The addition of 80% concentration of cabbage waste with 48 hours of fermentation time produced the optimum results for the Arabica coffee decaffeination process. This method achieved a decaffeination efficiency of more of 96% and met the quality standards outlined in SNI 01-3542-2004.
Downloads
References
[2] International Coffee Organization, ICO Coffee Development Report 2019 Overview. [Online]. Available: https:/ / www .ico.org / documents / cy2018 - 19 / ed - 2318e - overview - flagship - report.pdf
[3] S. Ahmed et al., “Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora,” Front. Plant Sci., vol. 12, 2021, doi: 10.3389/fpls.2021.708013.
[4] R. Colombo and A. Papetti, “Decaffeinated coffee and its benefits on health: focus on systemic disorders,” Crit. Rev. Food Sci. Nutr., vol. 61, no. 15, pp. 2506–2522, 2021, doi: 10.1080/10408398.2020.1779175.
[5] A. A. Azuan, Z. Z. Mohd, M. Hasmadi, N. D. Rusli, and M. K. Zainol, “Physicochemical, antioxidant and sensory characteristics of cookies supplemented with different levels of spent coffee ground extract,” Food Res., vol. 4, no. 4, pp. 1181–1190, 2020, doi: 10.26656/fr.2017.4(4).058.
[6] H. Duguma and M. Chewaka, “Review on Coffee (Coffea arabica L.) Wet Processing more Focus in Ethiopia,” Acta Sci. Agric., vol. 3, no. 11, pp. 11–15, 2019, doi: 10.31080/asag.2019.03.0676.
[7] H. S. Kwak, Y. Jeong, and M. Kim, “Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity and Consumer Acceptability,” J. Food Qual., vol. 2018, 2018, doi: 10.1155/2018/5967130.
[8] S. Saloko, D. Handito, Murad, and N. Apriani, “The Effect of Addition Papaya Leaf Extract (Carica papaya L.) on Reducing Caffeine Levels in Robusta Coffee,” IOP Conf. Ser. Earth Environ. Sci., vol. 515, no. 1, 2020, doi: 10.1088/1755-1315/515/1/012062.
[9] T. Mahatmanto, W. B. Sunarharum, F. A. Putri, C. A. Susanto, A. O. Davian, and U. Murdiyatmo, “The microbiology of arabica and robusta coffee cherries: A comparative study of indigenous bacteria with presumptive impact on coffee quality,” FEMS Microbiol. Lett., vol. 370, 2023, doi: 10.1093/femsle/fnad024.
[10] Badan Pusat Statistik, “Produksi Tanaman Sayuran,” 2022. [Online]. Available: https://www.bps.go.id/indicator/55/61/4/produksi-tanaman-sayuran.html
[11] D. Cahyaningsih and A. Sugiharto, “The Effect of Fermentation Time of Waste Cabbage (Brassica oleracea) as a Natural Preservative in Tofu,” J. Teknol. Pangan, vol. 5, no. 2, pp. 1–6, 2022.
[12] Y. Desmiaty, L. Nurhidayati, N. M. D. Sandhiutami, R. M. R. Hasan, K. A. Meynderth, and D. A. Noviastuti, “The Characteristics of Some Commercial Arabica Coffee Beans in Indonesia,” J. Ilmu Kefarmasian Indones., vol. 20, no. 2, p. 245, 2022, doi: 10.35814/jifi.v20i2.1277.
[13] P. B. Widodo, M. E. Yulianto, H. D. Ariyanto, and V. Paramita, “Efficacy of natural and full washed post-harvest processing variations on arabica coffee characteristics,” Mater. Today Proc., vol. 87, pp. 79–85, 2023, doi: 10.1016/j.matpr.2023.02.376.
[14] R. A. Fadri, K. Sayuti, N. Nazir, and I. Suliansyah, “Production Process and Quality Testing of Arabica Ground Coffee (Coffee arabica L) Solok Regency, West Sumatera,” J. Appl. Agric. Sci. Technol., vol. 4, no. 1, pp. 36–55, 2020, doi: 10.32530/jaast.v4i1.135.
[15] L. L. Ruta and I. C. Farcasanu, “Coffee and yeasts: From flavor to biotechnology,” Fermentation, vol. 7, no. 1, 2021, doi: 10.3390/fermentation7010009.
[16] S. Zhang, J. Jin, J. Chen, S. Ercisli, and L. Chen, “Purine alkaloids in tea plants: component, biosynthetic mechanism and genetic variation,” Beverage Plant Res., vol. 2, 2022, doi: 10.48130/BPR-2022-0013.
[17] L. Huang and B. Sperlágh, “Caffeine consumption and schizophrenia: A highlight on adenosine receptor–independent mechanisms,” Curr. Opin. Pharmacol., vol. 61, pp. 106–113, 2021, doi: 10.1016/j.coph.2021.09.003.
[18] Y. Zou, M. Gaida, F. A. Franchina, P. H. Stefanuto, and J. F. Focant, “Distinguishing between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-TOFMS, Chemometrics, and Machine Learning,” Molecules, vol. 27, no. 6, 2022, doi: 10.3390/molecules27061806.
[19] L.-M. Caracostea, R. Sîrbu, and F. Buşuricu, “Determination of Caffeine Content in Arabica and Robusta Green Coffee of Indian Origin,” Eur. J. Nat. Sci. Med., vol. 4, no. 1, pp. 67–77, 2021, doi: 10.26417/425qba31z.
[20] N. Moreb, A. Murphy, S. Jaiswal, and A. K. Jaiswal, “Nutritional Composition and Antioxidant Properties of Fruits and Vegetables,” in Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, 1st ed., Academic Press, 2020, pp. 33–59. doi: 10.1016/B978-0-12-812780-3.00003-9.
[21] E. B. Joel et al., “Peroxidase from waste cabbage (Brassica oleracea capitata L.) exhibits the potential to biodegrade phenol and synthetic dyes from wastewater,” Sci. African, vol. 10, 2020, doi: 10.1016/j.sciaf.2020.e00608.
[22] D. Kristiyanto, B. D. H. Pranoto, and Abdullah, “Penurunan Kadar Kafein Fermentasi Menggunakan Penurunan Kadar Kafein Kopi Arabika Dengan Proses Fermentasi Menggunakan Nopkor Mz Dengan Proses Nopkor Mz-15,” J. Teknol. Kim. dan Ind., vol. 2, no. 4, pp. 170–176, 2013.
[23] M. C. B. da Mota, N. N. Batista, M. H. S. Rabelo, D. E. Ribeiro, F. M. Borém, and R. F. Schwan, “Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast,” Food Res. Int., vol. 136, 2020, doi: 10.1016/j.foodres.2020.109482.
[24] M. Haile and W. H. Kang, “The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality,” J. Food Qual., vol. 2019, 2019, doi: 10.1155/2019/4836709.
[25] M. Balya Barlaman and S. Suwasono, “Karakteristik Fisik Dan Organoleptik Biji Kopi Arabika Hasil Pengolahan Semi Basah Dengan Variasi Jenis Wadah Dan Lama Fermentasi (Studi Kasus Di Desa Pedati Dan Sukosawah Kabupaten Bondowoso),” Agrointek, vol. 7, no. 2, pp. 108–121, 2013.
[26] S. Mariyam, R. J. Widiyastuti, J. N. W. Karyadi, H. Z. Amanah, and A. Kistanti, “ Physiochemical Characteristic of Fermented Coffee with yeast addition (Hanseniaspora uvarum and Candida parapsilosis) ,” in Proceedings of the International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022), 2023. doi: 10.2991/978-94-6463-086-2_43.
[27] S. Eticha and T. Bedassa, “Determination of Caffeine in Coffee Samples by High Performance Liquid Chromatography and Ultra Violet - Visible Spectrophotometry Methods from Wollega, Ethiopia,” Int. J. Biochem. Biophys. Mol. Biol., vol. 5, no. 1, p. 8, 2020, doi: 10.11648/j.ijbbmb.20200501.12.
[28] S. Hainil, S. Suhaera, and L. Lirtri, “Quantitative Analysis of Caffeine Levels in Local Coffee (Coffea sp) Powder on Dabo Island with UV-Vis Spectrophotometry,” Borneo J. Pharm., vol. 2, no. 2, pp. 82–86, 2019, doi: 10.33084/bjop.v2i2.897.
[29] D. M. de J. Cassimiro, N. N. Batista, H. C. Fonseca, J. A. O. Naves, D. R. Dias, and R. F. Schwan, “Coinoculation of lactic acid bacteria and yeasts increases the quality of wet fermented Arabica coffee,” Int. J. Food Microbiol., vol. 369, 2022, doi: 10.1016/j.ijfoodmicro.2022.109627.
[30] K. Chiodza and N. J. Goosen, “Influence of mixing speed, solids concentration and enzyme dosage on dry solids yield and protein recovery during enzymatic hydrolysis of sardine (Sardina pilchardus) processing by-products using Alcalase 2.4L: a multivariable optimisation approach,” Biomass Convers. Biorefinery, 2023, doi: 10.1007/s13399-023-03829-2.
[31] T. Iswanto, M. Shovitri, A. Altway, T. Widjaja, P. Lisdiyanti, and A. P. Putra, “Assessment of Caffeine-degrading Ability on Bacterial Strains Klebsiella sp. Isolated from Feces of Asian Palm Civet (Luwak),” Int. J. Technol., vol. 14, no. 1, pp. 100–108, 2023, doi: 10.14716/ijtech.v14i1.4982.
[32] G. A. F. Campos, “Wet-coffee processing production wastes: quality, potentials, and valorization opportunities,” 2022, [Online]. Available: https://publishup.uni-potsdam.de/frontdoor/index/index/docId/55882
[33] Maciej Serda et al., “Fermentasi Kopi Robusta (Coffea canephora) Menggunakan Isolat Bakteri Asam Laktat Dari Feces Luwak Dengan Perlakuan Lama Waktu Inkubasi,” J. Akad. Biol., vol. 4, no. 3, pp. 31–40, 2015, [Online]. Available: https://ejournal3.undip.ac.id/index.php/biologi/article/view/19417
[34] T. Jeliński and P. Cysewski, “Quantification of Caffeine Interactions in Choline Chloride Natural Deep Eutectic Solvents: Solubility Measurements and COSMO-RS-DARE Interpretation,” Int. J. Mol. Sci., vol. 23, no. 14, 2022, doi: 10.3390/ijms23147832.
[35] Nazar, “Dekafeinasi Biji Kopi Luwak ( Civet coffee ) Dengan Menggunakan Ekstrak Buah Nanas ( Ananas comosus ( L ) Merr ) dan Buah Pepaya( Carica papaya ),” Skripsi Univ. Sriwij., no. L, 2016.
[36] Ridwansyah, Pengolahan Kopi. Universitas Sumatera Utara, 2003.