Performance of Cellulose and Gum-based Oleogelators to Form Oleogels in Different Oil Systems
Main Article Content
Keywords
vegetable oil, gum, oleogel, cellulose
Abstract
One of the formed fats that is attracting attention as an alternative to trans-fat is oleogel. Oleogels can be formed using edible and non-edible vegetable oils, depending on the desired application. In this study, we used an emulsion-template approach with three oil systems: canola oil, sunflower oil, and castor oil, and combined hydroxypropyl methylcellulose (HPMC) and xanthan gum (XG) as oleogelators in specific ratios to form oleogel. Stable oleogels were formed when both oleogelators were present in the system. The oil binding capacity of the oleogel with respect to the amount of oil loss varied from less than 5% to more than 30%, depending on oil saturated fatty acid composition and HPMC:XG ratio. Higher saturated fatty acid concentration in the oil strengthens the oleogel matrix and reduces the oil loss rate. High HPMC composition and low XG composition reduce the oil binding ability of oleogels. In oleogel systems, HPMC acts as an emulsifier and XG acts as a thickener, resulting in a lower-than-average XG concentration and a thinner gel. Although the structure and color of oleogels are very stable over 28 days of storage, the rate of oxidation still needs to be minimized. Heating the oleogel system and the presence of aqueous phase can accelerate the oxidation of the oleogel, which can shorten its shelf-life and limit its applications, especially in the food industry.
Downloads
References
[2] M. Abdollahi, S. A. H. Goli, dan N. Soltanizadeh, “Physicochemical Properties of Foam-Templated Oleogel Based on Gelatin and Xanthan Gum,” Eur. J. Lipid Sci. Technol., vol. 1900196, hal. 1–9, 2019.
[3] V. Kostik, S. Memeti, dan B. Bauer, “FATTY ACID COMPOSITION OF EDIBLE OILS AND FATS.”
[4] D. A. Trirahayu dan B. Santoso, “Pengaruh Gelling Agent terhadap Pembentukan Oleogel Berbasis Canola Oil,” FLUIDA, vol. 12, no. 2, hal. 78–83, Nov 2019, doi: 10.35313/fluida.v12i2.1618.
[5] Z. Meng, K. Qi, Y. Guo, Y. Wang, dan Y. Liu, “Soybean Oil Oleogels Structured By Different Cellulose Ethers,” Eur. J. Lipid Sci. Technol., 2018.
[6] M. Öǧütcü dan E. Yilmaz, “Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products,” Grasas y Aceites, vol. 65, no. 3, 2014, doi: 10.3989/gya.0349141.
[7] S. Z. Luo et al., “Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application,” Food Hydrocoll., vol. 95, no. April, hal. 76–87, 2019, doi: 10.1016/j.foodhyd.2019.04.016.
[8] M. Öʇütcü dan E. Yilmaz, “Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes,” Int. J. Food Prop., vol. 18, no. 8, hal. 1741–1755, 2015, doi: 10.1080/10942912.2014.933352.
[9] A. R. Patel, D. Schatteman, A. Lesaffer, dan K. Dewettinck, “A foam-templated approach for fabricating organogelsusing a water-soluble polymer,” 2013, doi: 10.1039/c3ra44763d.
[10] A. S. Giacomozzi, M. E. Carrín, dan C. A. Palla, “Muffins Elaborated with Optimized Monoglycerides Oleogels: From Solid Fat Replacer Obtention to Product Quality Evaluation,” J. Food Sci., vol. 83, no. 6, hal. 1505–1515, Jun 2018, doi: 10.1111/1750-3841.14174.
[11] K. Abdolmaleki, L. Alizadeh, K. Nayebzadeh, S. M. Hosseini, dan R. Shahin, “Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method,” J. Texture Stud., vol. 51, no. 2, hal. 290–299, 2020, doi: 10.1111/jtxs.12469.
[12] D. A. Trirahayu dan R. P. Putra, “Pengembangan Oleogel Berbasis Minyak Biji Bunga Matahari Dengan Memanfaatkan Gelling Agent Dari Berbagai Sumber Hidrokoloid,” Fluida, vol. 15, no. 1, hal. 1–7, 2022.
[13] A. R. Patel, N. Cludts, M. D. Bin Sintang, A. Lesaffer, dan K. Dewettinck, “Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application,” Food Funct., vol. 5, no. 11, hal. 2833–2841, 2014, doi: 10.1039/c4fo00624k.
[14] N. E. Hughes, A. G. Marangoni, A. J. Wright, M. A. Rogers, dan J. W. E. Rush, “Potential food applications of edible oil organogels,” Trends Food Sci. Technol., vol. 20, no. 10, hal. 470–480, Okt 2009, doi: 10.1016/j.tifs.2009.06.002.
[15] R. Sánchez, J. M. Franco, M. A. Delgado, C. Valencia, dan C. Gallegos, “Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: Influence of ethyl cellulose molecular weight,” Carbohydr. Polym., vol. 83, no. 1, hal. 151–158, Jan 2011, doi: 10.1016/J.CARBPOL.2010.07.033.
[16] R. Sánchez, J. M. Franco, M. A. Delgado, C. Valencia, dan C. Gallegos, “Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications,” Grasas y Aceites, vol. 62, no. 3, hal. 328–336, 2011, doi: 10.3989/gya.113410.
[17] R. Gallego, M. González, J. F. Arteaga, C. Valencia, dan J. M. Franco, “Influence of functionalization degree on the rheological properties of isocyanate-functionalized chitin- and chitosan-based chemical oleogels for lubricant applications,” Polymers (Basel)., vol. 6, no. 7, hal. 1929–1947, 2014, doi: 10.3390/polym6071929.
[18] A. M. Borrero‐lópez, C. Valencia, A. Blánquez, M. Hernández, M. E. Eugenio, dan J. M. Franco, “Cellulose pulp‐ and castor oil‐based polyurethanes for lubricating applications: Influence of streptomyces action on barley and wheat straws,” Polymers (Basel)., vol. 12, no. 12, hal. 1–15, 2020, doi: 10.3390/polym12122822.
[19] J. E. Martín-Alfonso, M. J. Martín-Alfonso, C. Valencia, dan M. T. Cuberes, “Rheological and tribological approaches as a tool for the development of sustainable lubricating greases based on nano-montmorillonite and castor oil,” Friction, vol. 9, no. 2, hal. 415–428, Apr 2021, doi: 10.1007/S40544-020-0407-Y.
[20] T. Wüstenberg, Cellulose and Cellulose Derivatives in the Food Industry: Fundamentals and Applications. Weinheim: Wiley-VCH, 2015.
[21] D. M. Prabhu dan W.-J. Li, “The most abundant natural resource: Cellulose and its derivatives and their applications,” Nova Science Publishers, Inc., 2015.
[22] G. Phillips dan P. Williams, Ed., Handbook of Hydrocolloids. Elsevier, 2009.
[23] Y. Su et al., “Emulsion-Templated Liquid Oil Structuring with Egg White Protein Microgel- Xanthan Gum,” Foods, vol. 12, no. 9, hal. 1–16, 2023, doi: 10.3390/foods12091884.
[24] A. J. Gravelle, M. Davidovich-Pinhas, A. K. Zetzl, S. Barbut, dan A. G. Marangoni, “Influence of solvent quality on the mechanical strength of ethylcellulose oleogels,” Carbohydr. Polym., vol. 135, hal. 169–179, 2016, doi: 10.1016/j.carbpol.2015.08.050.
[25] Z. Meng, K. Qi, Y. Guo, Y. Wang, dan Y. Liu, “Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose,” Food Chem., vol. 246, hal. 137–149, 2018, doi: 10.1016/j.foodchem.2017.10.154.
[26] M. Davidovich-Pinhas, A. J. Gravelle, S. Barbut, dan A. G. Marangoni, “Temperature effects on the gelation of ethylcellulose oleogels,” Food Hydrocoll., vol. 46, hal. 76–83, 2015, doi: 10.1016/j.foodhyd.2014.12.030.
[27] C. Park, H. L. Bemer, dan F. Maleky, “Oxidative Stability of Rice Bran Wax Oleogels and an Oleogel Cream Cheese Product,” J. Am. Oil Chem. Soc., vol. 95, no. 10, hal. 1267–1275, Okt 2018, doi: 10.1002/AOCS.12095.
[28] M. Marín‐Suárez, P. J. García‐Moreno, M. Padial‐Domínguez, A. Guadix, dan E. M. Guadix, “Production and characterization of ice cream with high content in oleic and linoleic fatty acids,” Eur. J. Lipid Sci. Technol., vol. 118, no. 12, hal. 1846–1852, Des 2016, doi: 10.1002/ejlt.201600104.
[29] R. Tanti, S. Barbut, dan A. G. Marangoni, “Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams,” Food Hydrocoll., vol. 61, hal. 329–337, Des 2016, doi: 10.1016/j.foodhyd.2016.05.032.
[30] A. K. Zetzl, A. G. Marangoni, dan S. Barbut, “Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters,” Food Funct., vol. 3, no. 3, hal. 327, 2012, doi: 10.1039/c2fo10202a.
[31] A. S. Giacomozzi, M. E. Carrín, dan C. A. Palla, “Storage Stability of Oleogels Made from Monoglycerides and High Oleic Sunflower Oil,” Food Biophys. 2020 163, vol. 16, no. 3, hal. 306–316, Mar 2021, doi: 10.1007/S11483-020-09661-9.
[32] J. Pan, L. Tang, Q. Dong, Y. Li, dan H. Zhang, “Effect of oleogelation on physical properties and oxidative stability of camellia oil-based oleogels and oleogel emulsions,” Food Res. Int., vol. 140, hal. 110057, Feb 2021, doi: 10.1016/J.FOODRES.2020.110057.
[33] J. Lim, H.-S. Hwang, dan S. Lee, “Oil-structuring characterization of natural waxes in canola oil oleogels: rheological, thermal, and oxidative properties,” doi: 10.1007/s13765-016-0243-y.
[34] Y. Guo et al., “Investigation of the in vitro digestion fate and oxidation of protein-based oleogels prepared by pine nut oil,” LWT, vol. 164, Jul 2022, doi: 10.1016/J.LWT.2022.113660.
[35] V. Conty, S. Theierl, dan E. Flöter, “Improving the nutritional profile of culinary products: oleogel-based bouillon cubes,” Food Funct., vol. 12, no. 16, hal. 7185–7197, Agu 2021, doi: 10.1039/D1FO01589C.
[36] L. Liu, I. S. A. Ramirez, J. Yang, dan O. N. Ciftci, “Evaluation of oil-gelling properties and crystallization behavior of sorghum wax in fish oil,” Food Chem., vol. 309, hal. 125567, Mar 2020, doi: 10.1016/J.FOODCHEM.2019.125567.
[37] J. Daniel dan R. Rajasekharan, “Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids,” J. Am. Oil Chem. Soc., vol. 80, no. 5, hal. 417–421, Mei 2003, doi: 10.1007/S11746-003-0714-0.
[38] F. G. Gandolfo, A. Bot, dan E. Flöter, “Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures,” J. Am. Oil Chem. Soc. 2004 811, vol. 81, no. 1, hal. 1–6, 2004, doi: 10.1007/S11746-004-0851-5.