Air Quality Evaluation Based on PM10 and PM2.5 Concentrations at the Entrance Gate of Kota Baru Parahyangan, West Bandung Regency
Main Article Content
Keywords
Abstract
Initially, Kota Baru Parahyangan was expected to have healthy air quality, because it is located far from the center of Bandung and the surrounding environment is still in the form of rice fields and small forests. However, because the entrance to Kota Baru Parahyangan is a confluence of vehicles from the west, east and the Padalarang toll gate, it causes severe vehicle congestion. The consequence of this density is an increase in PM10 and PM2.5 concentrations in the area. Therefore, the purpose of this study is to determine the air quality in the entrance gate area of Kota Baru Parahyangan. Particulate matter measurements of PM10 and PM2.5 were conducted for one week (7 days), from Monday to Sunday. There were three testing points carried out at the entrance gate area, namely at two points at the density location and one point towards the residential and business center. When evaluated using PP No. 22 of 2021, the measurement results show that the PM10 concentration for 7 days of measurement is still below the quality standard, but for PM2.5 there are 3 days where the concentration is above the quality standard. Meanwhile, when evaluated based on Permen LHK No. 14 of 2020, the average air pollutant standard index (ISPU) status for PM10 is “Medium” for points 1 and 2, and “Good” for point 3, but for PM2.5 the average status is “Medium” for all points. These results prove that the density of vehicles will have an impact on reducing air quality at points 1 and 2, while point 3, where the density of vehicles is relatively small compared to points 1 and 2, still has “Good” air quality for PM10. The relatively high concentrations of PM10 and PM2.5 at points 1 and 2 need to be addressed by the developers of Kota Baru Parahyangan and the West Bandung Regency government.
Downloads
References
[2] Park, M.B., T.J. Lee, E.S. Lee, & D.S. Kim. (2019). Enhancing source identification of hourly PM2.5 data in Seoul based on a dataset segmentation scheme by positive matrix factorization (PMF). Environmental Pollution 10, 1042-1059. https://doi.org/10.1016/j.apr.2019.01.013.
[3] Xing, Y.F., Y.H. Xu, M.H. Shi, & Y.X. Lian. (2016). The impact of PM2.5 on human respiratory system. Journal of Thoracic Disease 8(1), E69-E74. doi: 10.3978/j.issn.2072-1439.2016.01.19.
[4] Pangestu N., & A.I. Fibriana. (2017). Faktor risiko kejadian autisme. HIGEIA, Journal of Public Health Research and Development 1(2), 141-150. https://journal.unnes.ac.id/sju/index.php/higeia/article/view/14019.
[5] O’Keeffe, L.M., G. Taylor, R.R. Huxley, P. Mitchell, M. Woodward, & S.A.E. Peters. (2018). Smoking as a risk factor lung cancer in women and men: a systematic review and meta-analysis. BMJ Open 8:021611. doi: 10.1136/bmjopen-2018-021611.
[6] Nuryati, N., K. Sumeru, A. Setyawan, Y.P. Hikmat, H.A. Sumeru, M.F. Sukri. (2024). Pengaruh asap rokok pada peningkatan konsentrasi PM2.5 dan PM10 di ruang tamu akibat merokok di dalam dan di luar rumah. Jurnal Ilmu Lingkungan 22(1), 85-92. https://ejournal.undip.ac.id/index.php/ilmulingkungan/article/view/51619.
[7] Peraturan Pemerintah Nomor 22 Tahun 2021 (PP No. 22 Tahun 2021) tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup. https://peraturan.bpk.go.id/Details/161852/pp-no-22-tahun-2021
[8] Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 14 Tahun 2020 (Permen LHK No. 14 Tahun 2020) tentang Indeks Standar Pencemar Udara. https://peraturan.bpk.go.id/Details/163466/permen-lhk-no-14-tahun-2020
[9] Peraturan Pemerintah (PP) No. 41 Tahun 1999 tentang Pengendalian Pencemaran Udara. https://peraturan.bpk.go.id/Details/54332/pp-no-41-tahun-1999.
[10] WHO. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. ISBN 978-92-4-003421-1.
[11] Kwoon, H., M. Ryu, & C. Carlsten. (2020). Ultrafine particles: unique physiochemical properties relevant to health and disease. Experimental and Molecular Medicine, 52, 318-328. https://doi.org/10.1038/s12276-020-0405-1.
[12] Kirešová S., M. Guzan, & V. Rusyn. (2022). Particulate Matter PM2.5 and PM10 and Its Impact on Air Quality in Urban and Rural Areas. ITTAP’2022: 2nd International Workshop on Information Technologies: Theoretical and Applied Problems, November 22–24, 2022, Ternopil, Ukraine. https://www.researchgate.net/publication/366593174.
[13] Khaled, M., S. Ali, H. Jaber, J. Faraj, R. Murr, & T. Lemenand. (2022). Heating/Cooling Fresh Air Using Hot/Cold Exhaust Air of Heating, Ventilating, and Air Conditioning Systems. Energies 15(5), 1877. https://doi.org/10.3390/en15051877.
[14] Ahmed, A., B. Hariharan, G.J. Prithiverajan, & K. Silaipillayarputhur. (2023). Economize air conditioning system by precooling fresh intake air. ICGEST, E3S Web of Conference 455, 02012.
[15] Wierzbicka, A., Y. Omelekhina, A.T. Saber, E. Bloom, L. Gren, et al. (2022). Indoor PM2.5 from occupied residences in Sweden caused higher inflammation in mice compared to outdoor PM2.5. Indoor Air 32(12), e13177. https://doi.org/10.1111/ina.13177.
[16] D. Sierra-Porta, Y. T. Solano-Correa, M. Tarazona-Alvarado, and L. A. N. de Villavicencio, “Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas,” CLEAN – Soil, Air, Water, vol. 51, no. 5, p. 2200222, 2023, doi: https://doi.org/10.1002/clen.202200222.
[17] Orellano, P., J. Reynoso, N. Quaranta, A. Bardach, & A. Ciapponi. (2020). Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxside (NO2), and Ozone (O3) and all-cause-specific mortality: Systematic review and meta-analysis. Environment International 142, 105876. https://doi.org/10.1016/j.envint.2020.105876.
[18] Stayner, L., J. Bena, A.J. Sasco, R. Smith, K. Steenland, M. Kreuser, & K. Straif. (2007). Lung cancer risk and workplace exposure to environmental tobacco smoke. American Journal of Public Health 97(3), 545-551. doi: 10.2105/AJPH.2004.061275.
[19] Wang, Y., L. Shi, M. Lee, P. Liu, Q. Di, A. Zanobetti, & J.D. Schwatz. (2017). Long-term exposure to PM2.5 and mortality among older adults in the Southeastern US. Epidemiology 28, 207-214. doi: 10.1097.EDE.0000000000000614.
[20] Chen, J., & G. Hoek. (2020). Long-term exposure to PM and all-cause-specific mortality: Systematic review and meta-analysis. Environment International 143, 105974. https://doi.org/10.1016/j.envint.2020.105974.
[21] Wan, Y., M.L. North, G. Navaranjan, A.K. Ellis, J.A. Siegel, & M.L. Diamond. (2022). Indoor exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) to Canadian children: the Kingston allergy birth cohort. Journal of Exposure Science & Environmental Epidemiology 32, 69-81. https://www.nature.com/articles/s41370-021-00310-y.
[22] Sanchez-Reyna G., K.Y. Wang, J.C. Gallardo, & D.E. Shallcross. (2006). Association between PM10 mass concentration and wind direction in London. Atmospheric Science Letters 6, 204-210, 2006. DOI: 10.1002/asl.117.
[23] Cichowicz, R., G. Wielgosiński, & W. Fetter. (2020). Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry 77, 35–48. https://doi.org/10.1007/s10874-020-09401-w.