The Design and Implementation of Fan Chips as Cooling for Milling Process on Aluminum Alloy 5086 to Increase Tool Life

Main Article Content

Agus Sifa
Dedi Suwandi
Tito Endramawan
Alam Aulia Rachman

Keywords

Fan Chips, Dry Cutting, Milling Process, Tool Life, Aluminium

Abstract

In the metal machining process, especially in the milling process, the parameters that affect the quality milling process results are cooling media because it affects the tool life used. This paper aims to determine the performance of using fan chips as the coolant in the dry milling process area. The method used is the computational fluid dynamic (CFD) method and the experimental milling process on a workpiece made from aluminum alloy 5086. In experimental testing using a variation of the milling machine spindle rotation. The simulation test results on the fluid flow character on fan chips with a protector producing a central character with a small area. In contrast, fan chips without a protector make a central character with a broader area. The wind speed data in simulation testing and experimental testing produced the same trend graph. The results of the performance of fan chips after experimented with variations in spindle rotation, cooling process on area occurs when the motor spindle rotates above 1120 Rpm on the fan chips with a protector, and the engine spindle rotates above 770 Rpm on the fan chips without a protector. The effect of fan chips on tool life affects increasing tool life by 8 minutes on installing fan chips with a protector and increasing tool life by 12 minutes on installing fan chips without a protector.

Downloads

Download data is not yet available.
Abstract 572 | PDF Downloads 413

References

Akbar, A. A., Shwaish, R. R., & Hadi, N. D. (2018). Study the Effect of Cutting Parameters on Temperature Distribution and Tool Life During Turning Stainless Steel 316L. Al-Khwarizmi Engineering Journal, 14(3), 112–122.
Anonymous. (2020). Aluminium Alloy 5086 Square Bar. Retrieved from Aluminium Alloy 5086 Square Bar: Retrieved Juli 30, 2020, from website: https://www.maxsteels.com/aluminium-alloy-5086-square-bar-supplier-exporter.html
Azom. (2012). M2 Molybdenum High Speed Tool Steel (UNS T11302). Retrieved Juli 27, 2020, from website: https://www.azom.com/article.aspx?ArticleID=6174
Berenji, K. R., Karagüzel, U., Özlü, E., & Budak, E. (2019). Effects of turn-milling conditions on chip formation and surface finish. CIRP Annals, 68(1), 113–116.
Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núnez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, 143–157.
Debapriya M. (n.d.). Tool Life: Meaning, Measurement and Expectancy. Retrieved July 27, 2020, from website: https://www.yourarticlelibrary.com/metallurgy/tool-life-meaning-measurement-and-expectancy/96151
Debnath, S., Reddy, M. M., & Yi, Q. S. (2016). Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method. Measurement, 78, 111–119.
Grzesik, W. (2017). In Chapter Four - Cutting Tool Materials Advanced Machining Processes of Metallic Materials (Second Edition) (pp. 35–63).
Gupta, N., & Nayak, A. K. (2018). Performance evaluation of coolant air with buoyancy in a parallelogrammic mixed displacement ventilated system. International Journal of Mechanical Sciences, 149, 38–53.
Hu, H. H. (2012). In Chapter 10 - Computational Fluid Dynamics Fluid Mechanics (pp. 421–472). Elsevier.
Johansson, D., Hägglund, S., Bushlya, V., & Ståhl, J.-E. (2017). Assessment of commonly used tool life models in metal cutting. Procedia Manufacturing, 11, 602–609.
Kovac, P., Gostimirovic, M., Rodic, D., & Savkovic, B. (2019). Using the temperature method for the prediction of tool life in sustainable production. Measurement, 133, 320–327.
Lang Technik. (2019). Chip Fan Clean-Tec. Retrieved July 14, 2020, from website: https://www.lang-technik.de/en/produkte/gruppen/50
Luo, M., Wang, J., Wu, B., & Zhang, D. (2017). Effects of cutting parameters on tool insert wear in end milling of titanium alloy Ti6Al4V. Chinese Journal of Mechanical Engineering, 30(1), 53–59.
Nouari, M., List, G., Girot, F., & Coupard, D. (2003). Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys. Wear, 255(7–12), 1359–1368.
Pang, S. C., Kalam, M. A., Masjuki, H. H., & Hazrat, M. A. (2012). A review on air flow and coolant flow circuit in vehicles’ cooling system. International Journal of Heat and Mass Transfer, 55(23–24), 6295–6306.
Parida, A. K., & Maity, K. (2018). Experimental investigation on tool life and chip morphology in hot machining of Monel-400. Engineering Science and Technology, an International Journal, 21(3), 371–379.
Rhett Allain. (2012). Modeling The Force From The Fan. Retrieved Agustus 06, 2020, from https://www.wired.com/2012/09/modeling-the-force-from-a-fan/
Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of Cleaner Production, 127, 1–18.
Tschätsch, H., & Reichelt, A. (2009). Cutting fluids (coolants and lubricants). In Applied Machining Technology (pp. 349–352). Springer.
Weinert, K., Inasaki, I., Sutherland, J. W., & Wakabayashi, T. (2004). Dry machining and minimum quantity lubrication. CIRP Annals, 53(2), 511–537.
Yufrizal, A., Indrawan, E., Helmi, N., Aziz, A., & Putra, Y. A. (2019). Pengaruh Sudut Potong dan Kecepatan Putaran Spindel Terhadap Kekasaran Permukaan pada Proses Bubut Mild Steel ST 37. Invotek: Jurnal Inovasi Vokasional Dan Teknologi, 19(2), 29–36.