The effectiveness of precipitation pH and temperature of Mg/Al Hydrotalcite synthesis on the glucose isomerization

Main Article Content

Ayu Ratna Permanasari

Keywords

Mg/Al Hydrotalcite, coprecipitation, isomerization, Response Surface Method

Abstract

Mg/Al Hydrotalcite as the catalyst in isomerization of glucose into fructose was made by coprecipitation of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Operating condition of precipitation including the temperature and pH was determined by Response Surface Method (RSM). The catalyst synthesis was carried out in the mole ratio of Mg/Al 3:1 for 18 h and the catalyst was activated by calcination for 3 h at 500°C. Catalyst characterization was done by FTIR, BET, and XRD. The highest mass product of Hydrotalcite Mg/Al 4.52 g, reached at the precipitation conditions of pH 9 and temperature of 45ºC. The catalytic activity of hydrotalcite Mg/Al was tested by the isomerization of Glucose into Fructose. The highest yield and selectivity were 20.14%, 62.40%, respectively. It was reached in pH 9 and 45ºC. While the highest conversion, 53.47%, was achieved in the pH 11.12 with a precipitation temperature of 45ºC. By the RSM analysis, neither the mass of catalyst product nor the catalytic activity from the isomerization (yield, conversion, and selectivity) were affected significantly by the pH and temperature precipitation.

Downloads

Download data is not yet available.
Abstract 90 | PDF Downloads 46

References

[1] N. Lumbuun and N. Kodim, “Pengaruh Konsumsi Fruktosa pada Minuman Kemasan terhadap Toleransi Glukosa Terganggu pada Kelompok Usia Dewasa Muda di Perkotaan Indonesia,” J. Epidemiol. Kesehat. Indones., vol. 1, no. 2, 2017, doi: 10.7454/epidkes.v1i2.1478.
[2] A. L. Pratiwi, A. S. Duniaji, and I. W. R. Widarta, “PENGARUH PENAMBAHAN HIGH FRUCTOSE SYRUP (HFS-55) TERHADAP KARAKTERISTIK RED WINE KELOPAK BUNGA ROSELA (Hibiscus sabdariffa L.),” J. Ilmu dan Teknol. Pangan, vol. 8, no. 4, p. 390, 2019, doi: 10.24843/itepa.2019.v08.i04.p05.
[3] S. H. Qonitah, R. A. Dian, and Basito, “Kajian Penggunaan High Fructose Syrup (HFS) sebagai Pengganti Gula Sukrosa terhadap Karakteristik Fisik dan Kimia Biskuit Berbasis Tepung Jagung (Zea Mays) Dan Tepung Kacang Merah (Phaseolus vulgaris L.),” J. Teknol. Has. Pertan., vol. 9, no. 2, pp. 9–21, 2016.
[4] Y. Yunivia, B. Dwiloka, and H. Rizqiati, “Pengaruh Penambahan High Fructose Syrup ( HFS ) terhadap Perubahan Sifat Fisikokimia dan Mikrobiologi Kefir Air Kelapa Hijau,” J. Teknol. Pangan, vol. 3, no. 1, pp. 116–120, 2018.
[5] J. S. White, “Straight talk about high-fructose corn syrup: What it is and what it ain’t,” Am. J. Clin. Nutr., vol. 88, no. 6, 2008, doi: 10.3945/ajcn.2008.25825B.
[6] M. Moliner, Y. Román-Leshkov, and M. E. Davis, “Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 14, pp. 6164–6168, 2010, doi: 10.1073/pnas.1002358107.
[7] A. R. Permanasari, A. Fauzan, N. L. Rachmalia, R. Elfanti, and W. Wibisono, “Fructose syrup production from Onggok with isomerization process by Mg/Al hydrotalcite catalyst and glucose isomerase enzyme,” J. Phys. Conf. Ser., vol. 1450, no. 1, 2020, doi: 10.1088/1742-6596/1450/1/012002.
[8] F. Yulistiani, Saripudin, L. Maulani, W. S. Ramdhayani, W. Wibisono, and A. R. Permanasari, “Fructose Syrup Production from Tapioca Solid Waste (Onggok) by Using Enzymatic Hydrolysis in Various pH and Isomerization Process,” J. Phys. Conf. Ser., vol. 1295, no. 1, 2019, doi: 10.1088/1742-6596/1295/1/012032.
[9] M. Claude, D. Robert, R. Alain, and T. Didier, “Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites,” Appl. Catal. A Gen., vol. 193, 2000, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926860X99004354%5Cnfile:///_unknown_%5C_unknown_%5CIsomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcite - 0.pdf%5Cnpapers3://publication/doi/10.1016/S0926-8.
[10] I. Delidovich and R. Palkovits, “Catalytic activity and stability of hydrophobic Mg-Al hydrotalcites in the continuous aqueous-phase isomerization of glucose into fructose,” Catal. Sci. Technol., vol. 4, no. 12, pp. 4322–4329, 2014, doi: 10.1039/c4cy00776j.
[11] F. Kovanda, D. Koloušek, Z. Cílová, and V. Hulínský, “Crystallization of synthetic hydrotalcite under hydrothermal conditions,” Appl. Clay Sci., vol. 28, no. 1-4 SPEC. ISS., pp. 101–109, 2005, doi: 10.1016/j.clay.2004.01.009.
[12] S. Yu, E. Kim, S. Park, I. K. Song, and J. C. Jung, “Isomerization of glucose into fructose over Mg-Al hydrotalcite catalysts,” Catal. Commun., vol. 29, pp. 63–67, 2012, doi: 10.1016/j.catcom.2012.09.015.
[13] M. Yabushita, N. Shibayama, K. Nakajima, and A. Fukuoka, “Selective Glucose-to-Fructose Isomerization in Ethanol Catalyzed by Hydrotalcites,” ACS Catal., vol. 9, no. 3, pp. 2101–2109, 2019, doi: 10.1021/acscatal.8b05145.
[14] Z. Yang, K. M. Choi, N. Jiang, and S. E. Park, “Microwave synthesis of hydrotalcite by urea hydrolysis,” Bull. Korean Chem. Soc., vol. 28, no. 11, pp. 2029–2033, 2007, doi: 10.5012/bkcs.2007.28.11.2029.
[15] R. Zhao, C. Yin, H. Zhao, and C. Liu, “Synthesis, characterization, and application of hydotalcites in hydrodesulfurization of FCC gasoline,” Fuel Process. Technol., vol. 81, no. 3, pp. 201–209, 2003, doi: 10.1016/S0378-3820(03)00012-2.
[16] H. A. S. H. C. K. K. S. Budiasih, “Pengaruh Temperatur Kalsinasi Terhadap Hidrotalsit Mg/Al Yang Disintesis Melalui Metode Presipitasi Tak Jenuh,” J. Penelit. Saintek, vol. 19, no. 2, 2015.
[17] F. Cavani, F. Trifirò, and A. Vaccari, “Hydrotalcite-type anionic clays: Preparation, properties and applications.,” Catal. Today, vol. 11, no. 2, pp. 173–301, 1991, doi: 10.1016/0920-5861(91)80068-K.
[18] I. Ridwan, C. Chinwanitcharoen, and K. Tamura, “A new biodiesel production by water addition to supercritical tert-butyl methyl ether using a plug flow reactor,” Fuel, vol. 305, 2021, doi: 10.1016/j.fuel.2021.121512.
[19] R. V Prihod’ko, K. Erdmann, A. Lhor, and R. van Santen, “Synthesis and Structural Transformations of Hydrotalcite-Like Materials Mg-Al and Zn-Al,” Russ. J. Appl. Chem., vol. 74, no. 1–4, pp. 1621–1626, 2014, doi: 10.1023/A.
[20] D. Steinbach, A. Klier, A. Kruse, J. Sauer, S. Wild, and M. Zanker, “Isomerization of glucose to fructose in hydrolysates from lignocellulosic biomass using hydrotalcite,” Processes, vol. 8, no. 6, 2020, doi: 10.3390/PR8060644.
[21] Y. F. Lung, Y. S. Sun, C. K. Lin, J. Y. Uan, and H. H. Huang, “Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: Evaluations of phosphorus intercalation activity and cellular cytotoxicity,” Sci. Rep., vol. 6, 2016, doi: 10.1038/srep32458.
[22] B. Wiyantoko, P. Kurniawati, T. E. Purbaningtias, and I. Fatimah, “Synthesis and Characterization of Hydrotalcite at Different Mg/Al Molar Ratios,” Procedia Chem., vol. 17, pp. 21–26, 2015, doi: 10.1016/j.proche.2015.12.115.
[23] I. Delidovich and R. Palkovits, “Structure-performance correlations of Mg-Al hydrotalcite catalysts for the isomerization of glucose into fructose,” J. Catal., vol. 327, pp. 1–9, 2015, doi: 10.1016/j.jcat.2015.04.012.
[24] S. Moriyama, K. Sasaki, and T. Hirajima, “Effect of freeze drying on characteristics of Mg–Al layered double hydroxides and bimetallic oxide synthesis and implications for fluoride sorption,” Appl. Clay Sci., vol. 132–133, pp. 460–467, 2016, doi: 10.1016/j.clay.2016.07.016.
[25] N. Chen et al., “Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study,” Lancet, vol. 395, no. 10223, pp. 507–513, 2020, doi: 10.1016/S0140-6736(20)30211-7.
[26] D. G. Tong, W. Chu, Y. Y. Luo, X. Y. Ji, and Y. He, “Effect of crystallinity on the catalytic performance of amorphous Co-B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation,” J. Mol. Catal. A Chem., vol. 265, no. 1–2, pp. 195–204, 2007, doi: 10.1016/j.molcata.2006.10.032.
[27] Willard HH, Merritt LL, Dean JJA, and Frank AS, Instrumental method of analysis. 1986.