Optimization of Device Installations in the Home Solar Power Generation System
Main Article Content
Keywords
Optimization Device Installation, Home Solar Power, Grid Tie Inverter, Proper DC Configuration
Abstract
One of the main challenges in building a Solar Power Generation System at home or a Home Solar Power Plant (Home SPP) is choosing component specifications according to price. The main components of Home SPP are photovoltaics (PV) panels, inverters, and wiring systems. Given the strict price constraints, the selection of parts available on the commercial market is generally of low quality. However, low-quality components can still provide a significant advantage by optimizing the plant design. This research proves that the proper configuration can reduce electricity bills by 52.2%. This configuration does by choosing a Grid Tie Inverter (GTI) with a high working voltage and a 12 Volt PV configured in a parallel series circuit to work at 24 Volts. In addition, the 12 Volt PV panels configured in series to 24 Volts are proven to increase the conversion efficiency.
Downloads
References
[2] R. S. Model, “Diffuse sky radiation.”
[3] T. J. Rossi, J. F. Escobedo, C. M. dos Santos, L. R. Rossi, M. B. P. da Silva, and E. Dal Pai, “Global, diffuse and direct solar radiation of the infrared spectrum in Botucatu/SP/Brazil,” Renew. Sustain. Energy Rev., vol. 82, pp. 448–459, 2018.
[4] L. Tianze, L. Hengwei, J. Chuan, H. Luan, and Z. Xia, “Application and design of solar photovoltaic system,” in Journal of Physics: Conference Series, 2011, vol. 276, no. 1, p. 12175.
[5] J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: Operation and modeling,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2752–2758, 2008.
[6] M. Bajaj and A. K. Singh, “An analytic hierarchy process-based novel approach for benchmarking the power quality performance of grid-integrated renewable energy systems,” Electr. Eng., pp. 1–21, 2020.
[7] R. Du and P. Robertson, “Cost-effective grid-connected inverter for a micro combined heat and power system,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5360–5367, 2017.
[8] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimized one-cycle control in photovoltaic grid connected applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 3, pp. 954–972, 2006.
[9] M. S. Mahmodian, R. Rahmani, E. Taslimi, and S. Mekhilef, “Step by step analyzing, modeling and simulation of single and double array PV system in different environmental variability,” in Proceedings of International Conference on Future Environment and Energy, 2012, pp. 37–42.
[10] I. Abadlia, L. Hassaine, A. Beddar, F. Abdoune, and M. R. Bengourina, “Adaptive fuzzy control with an optimization by using genetic algorithms for grid connected a hybrid photovoltaic–hydrogen generation system,” Int. J. Hydrogen Energy, vol. 45, no. 43, pp. 22589–22599, 2020.
[11] M. Stojčić, A. Stjepanović, and Đ. Stjepanović, “ANFIS model for the prediction of generated electricity of photovoltaic modules,” Decis. Mak. Appl. Manag. Eng., vol. 2, no. 1, pp. 35–48, 2019.
[12] S. Aittahar, V. François-Lavet, S. Lodeweyckx, D. Ernst, and R. Fonteneau, “Imitative learning for online planning in microgrids,” in International Workshop on Data Analytics for Renewable Energy Integration, 2015, pp. 1–15.
[13] J. F. Ardashir, M. Sabahi, S. H. Hosseini, F. Blaabjerg, E. Babaei, and G. B. Gharehpetian, “A single-phase transformerless inverter with charge pump circuit concept for grid-tied PV applications,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5403–5415, 2016.
[14] O. Ezinwanne, F. Zhongwen, and L. Zhijun, “Energy performance and cost comparison of MPPT techniques for photovoltaics and other applications,” Energy Procedia, vol. 107, pp. 297–303, 2017.
[15] T. Shimizu, O. Hashimoto, and G. Kimura, “A novel high-performance utility-interactive photovoltaic inverter system,” IEEE Trans. power Electron., vol. 18, no. 2, pp. 704–711, 2003.
[16] N. Kelly, M. Sasso, G. Angrisani, and C. Roselli, “Impact of microgeneration systems on the low-voltage electricity grid,” 2014.
[17] S. Talari, M. Yazdaninejad, and M.-R. Haghifam, “Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads,” IET Gener. Transm. Distrib., vol. 9, no. 12, pp. 1498–1509, 2015.
[18] S. Silvestre, A. Boronat, and A. Chouder, “Study of bypass diodes configuration on PV modules,” Appl. Energy, vol. 86, no. 9, pp. 1632–1640, 2009.
[19] I. J. Hasan, N. A. J. Salih, and N. I. Abdulkhaleq, “Three-phase photovoltaic grid inverter system design based on PIC24FJ256GB110 for distributed generation,” Int. J. Power Electron. Drive Syst., vol. 10, no. 3, p. 1215, 2019.
[20] S. Hussain Nengroo et al., “An optimized methodology for a hybrid photovoltaic and energy storage system connected to a low-voltage grid,” Electronics, vol. 8, no. 2, p. 176, 2019.
[21] H. Ibrahim and N. Anani, “Study of the Effect of Different Configurations of Bypass Diodes on the Performance of a PV String,” in Sustainability in Energy and Buildings, Springer, 2020, pp. 593–600.
[22] F. F. Ahmad, C. Ghenai, A. K. Hamid, and M. Bettayeb, “Application of sliding mode control for maximum power point tracking of solar photovoltaic systems: A comprehensive review,” Annu. Rev. Control, 2020.
[23] A. Ali et al., “Review of online and soft computing maximum power point tracking techniques under non-uniform solar irradiation conditions,” Energies, vol. 13, no. 12, p. 3256, 2020.
[24] F. Shahnia and S. Bourbour, “A practical and intelligent technique for coupling multiple neighboring microgrids at the synchronization stage,” Sustain. Energy, Grids Networks, vol. 11, pp. 13–25, 2017.
[25] M. Seyedmahmoudian, A. Mohamadi, S. Kumary, A. M. T. Oo, and A. Stojcevski, “A comparative study on procedure and state of the art of conventional maximum power point tracking techniques for photovoltaic system,” Int. J. Comput. Electr. Eng., vol. 6, no. 5, p. 402, 2014.
[26] L. L. Jiang, R. Srivatsan, and D. L. Maskell, “Computational intelligence techniques for maximum power point tracking in PV systems: A review,” Renew. Sustain. Energy Rev., vol. 85, pp. 14–45, 2018.
[27] A. N. A. Ali, M. H. Saied, M. Z. Mostafa, and T. M. Abdel-Moneim, “A survey of maximum PPT techniques of PV systems,” in 2012 IEEE Energytech, 2012, pp. 1–17.
[28] M. Seyedmahmoudian, B. Horan, R. Rahmani, A. Maung Than Oo, and A. Stojcevski, “Efficient photovoltaic system maximum power point tracking using a new technique,” Energies, vol. 9, no. 3, p. 147, 2016.
[29] R. Faranda and S. Leva, “Energy Comparison of MPPT techniques for PV Systems,” WSEAS Trans. power Syst., vol. 3, no. 6, pp. 446–455, 2008.
[30] Y. M. Tung, A. P. Hu, and N.-K. Nair, “Evaluation of microcontroller based maximum power point tracking methods using dSPACE platform,” 2006.
[31] M. Bodur and M. Ermis, “Maximum power point tracking for low power photovoltaic solar panels,” in Proceedings of MELECON’94. Mediterranean Electrotechnical Conference, 1994, pp. 758–761.
[32] R. F. Coelho, F. M. Concer, and D. C. Martins, “A MPPT approach based on temperature measurements applied in PV systems,” in 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET), 2010, pp. 1–6.
[33] G. Wibisono, S. H. Pramono, and M. A. Muslim, “MPPT Menggunakan Metode Hibrid JST dan Algoritma Genetika Untuk Sistem Photovoltaic,” J. EECCIS, vol. 8, no. 2, pp. 181–186, 2014.
[34] M. Bahrami et al., “Hybrid maximum power point tracking algorithm with improved dynamic performance,” Renew. Energy, vol. 130, pp. 982–991, 2019.
[35] S. Utami, “Implementasi Algoritma Perturb and Observe untuk Mengoptimasi Daya Keluaran Solar Cell Menggunakan MPPT di Laboratorium Energi Baru Terbarukan,” J. Infotel, vol. 9, no. 1, pp. 92–99, 2017.
[36] S. Utami, S. Saodah, and A. Pudin, “Penggunaan Algoritma Incremental Conductance pada MPPT dengan Buck Converter untuk Pengujian Indoor dan Outdoor,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 6, no. 1, p. 97, 2018.
[37] F. Belhachat and C. Larbes, “A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions,” Renew. Sustain. Energy Rev., vol. 92, pp. 513–553, 2018.
[38] N. Golovanov, G. C. Lazaroiu, M. Roscia, and D. Zaninelli, “Power quality assessment in small scale renewable energy sources supplying distribution systems,” Energies, vol. 6, no. 2, pp. 634–645, 2013.
[39] V. François-Lavet, D. Taralla, D. Ernst, and R. Fonteneau, “Deep reinforcement learning solutions for energy microgrids management,” 2016.