Effect of Solution Concentration and Anodizing Coating Time on Hardness and Thickness Coating Of 7075-O Aluminum Alloy

Main Article Content

Tito Endramawan
Agus Sifa
Dedi Suwandi
Dudung Nana Permana
Mohammad Azwar Amat
Sukroni Sukroni
Felix Dionisius
Casiman Sukardi

Keywords

Heat treatment, Aluminum alloy, Anodizing, Hardness, Layer thickness

Abstract

One of the materials used in ship propellers is aluminum alloy. The advantages of aluminum are that it is easy to cast and relatively resistant to corrosion. This research aims to determine the effect of heat treatment and the effect of variations in the concentration of H2SO4 and immersion time in optimal of the anodizing process on the hardness value of 7075-O aluminum alloy (as-cast aluminum alloy). The method used is solution heat treatment at a temperature of 490ºC with a holding time of 6 hours, quenching using water or oil, with artificial aging at a temperature of 120ºC with a holding time of 24 hours. In the anodizing process, a sulfuric acid solution with various concentrations of 10%, 15%, and 20% with variations in immersion time of 10, 15, and 20 minutes. The results of vickers hardness test on heat-treated specimens with water quenching accompanied by artificial aging is 137.54 HV, it is increased by 47.44%. While the results of the vickers hardness test after anodizing is 213.09 HV, it is increased by 128.42%. Where the optimum hardness value was achieved at a concentration of 15% H2SO4 and an immersion time of 20 minutes. The coating thickness is equal to 25.79 µm.

Downloads

Download data is not yet available.
Abstract 155 | PDF Downloads 64

References

[1] M. Rante, M. Syahid, and O. Sutresman, “The Corrosion Erossion of Ship Propeller Al 7075 Produced by Gravity Sand Casting,” EPI Int. J. Eng., vol. 2, no. 2, pp. 172–177, 2019, doi: 10.25042/epi-ije.082019.13.
[2] A. S. Baskoro, I. Milyardi, and M. A. Amat, “The effect of welding parameter on mechanical properties and macrostructure of AA1100 using autogenous TIG welding,” Int. J. Automot. Mech. Eng., vol. 17, no. 1, pp. 7562–7569, 2020, doi: 10.15282/IJAME.17.1.2020.05.0560.
[3] J. D. Eo, J. Kim, Y. Jung, J. H. Lee, and W. B. Kim, “Effects of two-step anodization on surface wettability in surface treatment of aluminum alloy,” J. Korean Inst. Met. Mater., vol. 59, no. 2, pp. 73–80, 2021, doi: 10.3365/KJMM.2021.59.2.73.
[4] C. Presto and L. Ana Fainstein, Anodizing. England: The University of Manitoba, 2003.
[5] D. Permatasari, Z. Zuhaimi, and A. Jannifar, “Analisa Sifat Mekanik Aluminium Alloy 6151 Setelah Mengalami Perlakuan Panas,” J. Mesin Sains Terap., vol. 4, no. 1, p. 1, 2020, doi: 10.30811/jmst.v4i1.1737.
[6] J. Carlton, “Propeller materials,” in Marine Propellers and Propulsion, 4th ed., Elsevier, 2019, pp. 425–436. doi: 10.1016/b978-075068150-6/50020-6.
[7] A. H. R. Pratama, “Pengaruh Konsentrasi Larutan Asam Sulfat (H2So4) (16%-20%) Pada Proses Anodizing Dengan Bahan Aluminium,” Universitas Sanata Dharmayogyakarta, 2018.
[8] A. D. Isadare, B. Aremo, M. O. Adeoye, O. J. Olawale, and M. D. Shittu, “Effect of heat treatment on some mechanical properties of 7075 Aluminium alloy,” Mater. Res., vol. 16, no. 1, pp. 190–194, 2013, doi: 10.1590/S1516-14392012005000167.
[9] T. Surdia and S. Saito, Pengetahuan Bahan Teknik, 2nd ed. Jakarta: PT Pradnya Paramita, 1985.
[10] G. Napoli, A. Di Schino, M. Paura, and T. Vela, “Colouring titanium alloys by anodic oxidation,” Metalurgija, vol. 57, no. 1–2, pp. 111–113, 2018.
[11] L. T. Fuhr et al., “Colored anodizing of titanium with pyroligneous solutions of black wattle,” Rev. Mater., vol. 25, no. 2, pp. 1–18, 2020, doi: 10.1590/S1517-707620200002.1058.
[12] D. Masruri, “Pengaruh Konsentrasi Larutan Asam Sulfat Terhadap Ketahanan Korosi Hasil Proses Anodisasi Aluminium,” pp. 1–7, 2019.
[13] A. I. Lasmana, Wahono, and M. Romlie, “Pengaruh Variasi Larutan Elektrolit Terhadap Warna Dan Kekerasan Lapisan Hasil Proses Anodizing,” J. Tekhnik Mesin, no. 1, pp. 24–31, 2017.
[14] A. M. Mebed, M. Alzaid, and A. M. Abd-Elnaiem, “Comparative study of anodization of small-scale and wafer-scale aluminum films on a silicon substrate and controlling pores shape for practical applications,” J. Electroanal. Chem., vol. 894, 2021, doi: 10.1016/j.jelechem.2021.115367.
[15] A. Suprapto, P. E. Setyawan, and A. Iswantoko, “Pengaruh Variasi Larutan Sulfuric Acid Dan Phosphoric Acid Dengan Variasi Tegangan Dan Waktu Anodizing Terhadap Ketahanan Aus Pada Aluminium 6061,” in Simposium Nasional RAPI XVIIII : Fakultas Teknik UMS, 2019, pp. 288–294. [Online]. Available: https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/11705
[16] B. Basori, “Pengaruh Media Quenching Terhadap Kekerasan Dan Struktur Mikro Paska Hardfacing,” J. Kaji. Tek. Mesin, vol. 3, no. 2, pp. 66–72, 2018, doi: 10.52447/jktm.v3i2.1417.
[17] L. K. Arif Andrianto, Suwardiyono, “Pengaruh Kuat Arus Dan Waktu Terhadap Hasil Pewarnaan Dan Massa Aluminium Pada Proses Anodizing Dengan Elektrolit H2So4 15%,” Inov. Tek. Kim., vol. 1, no. 2010, pp. 50–54, 2016.
[18] I. J. Nugraha, “Pengaruh Variasi Waktu Pencelupan Pada Proses Anodizing Aluminium Seri 1xxx,” Universitas Muhammadiyah Yogyakarta, 2022. [Online]. Available: http://repository.umy.ac.id/handle/123456789/12285
[19] I. Ali, M. M. Quazi, E. Zalnezhad, A. A. D. Sarhan, N. L. Sukiman, and M. Ishak, “Hard Anodizing of Aerospace AA7075-T6 Aluminum Alloy for Improving Surface Properties,” Trans. Indian Inst. Met., vol. 72, no. 10, pp. 2773–2781, 2019, doi: 10.1007/s12666-019-01754-5.
[20] Z. M. Blednova, P. O. Rusinov, and D. V. Dmitrenko, “Failure analysis of screw propellers and increase of fail safety by surface modification with multicomponent materials with shape memory effect,” in Procedia Structural Integrity, 2016, pp. 1497–1505. doi: 10.1016/j.prostr.2016.06.190.