Characterization of Banana Peel Corrosion Inhibitor by Vacuum Microwave Assisted Extraction (VMAE) Method in 2% HCl Environment

Main Article Content

Jamarosliza binti Jamaluddin
Tifa Paramitha
Iva Najwa Salsabila
Angely Luviana
Muhammad Zikri Ramadhan
Angelina Putri
Alisya Nurbaits
Rony Pasonang Sihombing

Keywords

Corrosion inhibitor, Banana peel, GC-MS, Terpenoids

Abstract

Banana peel is a waste that is very abundant in Indonesia. The utilization of banana peel can be used for corrosion inhibitors. The type of environment applied in this study is an acidic environment, which is carried out in 2% HCl solution media. The purpose of this study is utilize banana waste extract obtained from the VMAE method. The extract was obtained by VMAE method at 150 watts, 300 watts and 450 watts for 10 minutes using ethanol solvent. The ratio of feed and solvent used was 1:10 (b/v). The results of the extract were subjected to phytochemical tests using Dragendroff, Wagner and Mayer reagents. After that, the extract was applied to the media for corrosion rate test and GC-MS. The results of the study showed that the lowest corrosion rate was obtained at a concentration of 1500 ppm non-aerated which was 0.7347 mmpy. While based on the GC-MS test results, terpenoid compounds and vitamin E can be detected from banana peel extract, where these two compounds are antioxidant substances that can be utilized as corrosion inhibitors.

Downloads

Download data is not yet available.
Abstract 235 | PDF Downloads 156

References

[1] N. Mulyaningsih, S. Mujiarto, and Gyani, “Pengaruh Daun Jambu Biji Sebagai Inhibitor Korosi Alami Rantai Kapal,” J. Mech. Eng., vol. 3, no. 1, 2019.
[2] S. M. Riza Fahmi S, “Pembuatan Bioetanol Dari Kulit Singkong,” Pembuatan Bioetanol Dari Kulit Singkong, p. 40, 2011.
[3] W. Wusnah, S. Bahri, and D. Hartono, “Proses pembuatan bioetanol dari kulit pisang kepok,” J. Teknol. Kim. Unimal, vol. 8, no. 1, p. 48, 2019, doi: 10.29103/jtku.v8i1.1915.
[4] N. Ekawandani and A. A. Kusuma, “Pengomposan Sampah Organik (Kubis dan Kulit Pisang) Dengan Menggunakan EM4,” Jurnal TEDC, vol. 12, no. 1. pp. 38–43, 2018.
[5] A. Munar, I. H. Bangun, and E. Lubis, “Pertumbuhan Sawi Pakchoi (Brassica rapa L.) Pada Pemberian Pupuk Bokashi Kulit Buah Kakao Dan Poc Kulit Pisang Kepok,” AGRIUM J. Ilmu Pertan., vol. 21, no. 3, pp. 243–253, 2018.
[6] S. Bahri, A. Aji, and F. Yani, “Pembuatan bioetanol dari kulit pisang kepok dengan cara fermentasi menggunakan ragi roti,” J. Teknol. Kim. Unimal, vol. 2, no. November, pp. 85–100, 2018.
[7] F. M. T. Supriyanti, H. Suanda, and R. Rosdiana, “Pemanfaatan ekstrak kulit pisang kepok (Musa bluggoe) sebagai sumber antioksidan pada produksi tahu,” pp. 393–400, 2015.
[8] O. O. Ogunleye, O. A. Eletta, A. O. Arinkoola, and O. O. Agbede, “Gravimetric and quantitative surface morphological studies of Mangifera indica peel extract as a corrosion inhibitor for mild steel in 1 M HCl solution,” Asia-Pacific J. Chem. Eng., vol. 13, no. 6, pp. 19–21, 2018, doi: 10.1002/apj.2257.
[9] E. Yufita, Z. -, M. I. Nur, F. Fatriah, and Z. Jalil, “Pengaruh Ekstrak Kulit Buah Naga Merah dan Daun Trembesi sebagai Penghambat Korosi pada Baja A36 dalam Larutan HCl 3%,” Indones. J. Appl. Phys., vol. 12, no. 1, p. 99, 2022, doi: 10.13057/ijap.v12i1.54625.
[10] T. Nurahman, E. G. Suka, and L. Rumiyanti, “Pengaruh Konsentrasi Inhibitor Korosi Ekstrak Kulit Pisang Kepok (Musa Paradisiaca L) Terhadap Laju Korosi Baja Karbon Api 5l Pada Suhu Perendaman 40c dan 80c,” J. Teor. dan Apl. Fis., vol. 9, no. 2, pp. 133–142, 2021, doi: 10.23960/jtaf.v9i2.2719.
[11] X. Hou, L. Gao, Z. Cui, and J. Yin, “Corrosion and protection of metal in the seawater desalination,” in IOP conference series: earth and environmental science, 2018, p. 22037.
[12] A. S. G. Sahuleka, H. J. Edi, and S. S. Abdullah, “Formulasi Sediaan Krim Antibakteri Ekstrak Etanol Daun Eceng Gondok (Eichhornia crassipes) Terhadap Bakteri Staphylococcus aureus,” Pharmacon, vol. 10, no. 4, pp. 1162–1168, 2021.
[13] R. pasonang Sihombing et al., “Aplikasi Ekstrak Eceng Gondok dalam Korosi dengan Pelarut Metanol,” JC-T (Journal Cis-Trans) J. Kim. dan Ter., vol. 6, no. 2, pp. 1–4, 2022, doi: 10.17977/um0260v6i22022p001.
[14] amalia yunita Rahmawati, “Sintesis dan karakterisasi senyawa Basa schiff 2-metoksi-6-((p-tolilimino)metil)fenol sebagai inhibitor korosi menggunakan electrochemical impedance spectroscopy (EIS),” no. July, pp. 1–23, 2020.
[15] D. Ristiana, “Aktivitas Antioksidan Dan Kadar Fenol Berbagai Ekstrak Daun Kopi (Coffea Sp.): Potensi Aplikasi Bahan Alami Untuk Fortifikasi Pangan,” J. Apl. Teknol. Pangan, vol. 6, no. 2, pp. 89–92, 2017, doi: 10.17728/jatp.205.
[16] H. Elmsellem et al., “A natural antioxidant and an environmentally friendly inhibitor of mild steel corrosion: A commercial oil of basil (Ocimum basilicum L.),” J. Chem. Technol. Metall., vol. 54, no. 4, pp. 742–749, 2019.
[17] I. M. C. Ienașcu et al., “Some Brassicaceae Extracts as Potential Antioxidants and Green Corrosion Inhibitors,” Materials (Basel)., vol. 16, no. 8, 2023, doi: 10.3390/ma16082967.
[18] X. Zhong et al., “Oxygen corrosion of N80 steel under laboratory conditions simulating high pressure air injection - Analysis of corrosion products,” J. Pet. Sci. Eng., vol. 172, pp. 162–170, 2019.
[19] L. Fan, L. Liu, Z. Yu, M. Cao, Y. Li, and F. Wang, “Corrosion Behavior of Ti60 Alloy under a Solid NaCl Deposit in Wet Oxygen Flow at 600 °C,” Scientific Reports, vol. 6. 2016. doi: 10.1038/srep29019.
[20] M. Z. M and R. Magga, “Analisis Laju Korosi Dengan Penambahan Pompa Pada Baja Komersil Dalam Media Air Laut,” J. Mek., vol. 8, no. 2, pp. 737–741, 2017.