Agglomeration Decrement from Nanocellulose Synthesis by adding PVA Capping Agent

Main Article Content

Endang Kusumawati
irwan hidayatulloh
Lidya Elizabeth

Keywords

hydrolysis, empty fruit bunch, delignification, ultrasonication

Abstract

Indonesia is one of the largest palm oil productions in the world. In 2017, Indonesia was responsible for almost 50% of global palm oil production. The abundant availability of Oil Palm Empty Fruit Bunches (OPEFB) has become a potential resource to be further utilized in derivative products such as cellulose, hemicellulose and lignin. The demand for nanocellulose material from extracted cellulose fibers is increasing. In this study, nanocellulose synthesis was carried out in several stages namely hydrolysis (H2SO4 64% (v/v) at 45oC for 45 minutes), delignification (NaOH 17,5% (w/v) at 80oC for 30 minutes), and bleaching (H2O2 10% (v/v) at 60oC for 15 minutes). Then, nanocellulose was subjected to ultrasonication. It was proved that nanocellulose with 50.487 nm diameters resulted from ultrasonication 50% amplitude. Moreover, adding 5%-w PVA (polyvinyl alcohol) as capping agent obtained 36.635 nm average diameter of nanocellulose. It showed nanocellulose synthesis successfully lowering agglomeration and maintaining diameter size of nano size.

Downloads

Download data is not yet available.
Abstract 111 | PDF Downloads 60

References

[1] W. Y. Lam, M. Kulak, S. Sim, H. King, M. A. J. Huijbregts, and R. Chaplin-kramer, “Greenhouse gas footprints of palm oil production in Indonesia over space and time,” Sci. Total Environ., vol. 688, pp. 827–837, 2019, doi: 10.1016/j.scitotenv.2019.06.377.
[2] E. Hambali and M. Rivai, “The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030 The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030,” IOP Conf. Ser. Environ. Sci., vol. 65, 2017.
[3] E. A. O. Batlle et al., “Thermodynamic and environmental assessment of different scenarios for the insertion of pyrolysis technology in palm oil biorefineries,” J. Clean. Prod., p. 119544, 2019, doi: 10.1016/j.jclepro.2019.119544.
[4] You Wei, Chen, L. Hwei Voon, S. Bee, and Abd, “Facile Production of Nanostructured Cellulose from Elaeis guineensis Empty Fruit Bunch via One Pot Oxidative-Hydrolysis Isolation Approach,” Carbohydr. Polym., vol. 157, pp. 1511–1524, 2017, doi: 10.1016/j.carbpol.2016.11.030.
[5] R. Dungani et al., 3. Bionanomaterial from agricultural waste and its application. Elsevier Ltd, 2017.
[6] Y. Chu, Y. Sun, W. Wu, and H. Xiao, “Dispersion Properties of Nanocellulose : A Review,” Carbohydr. Polym., vol. 250, no. July, p. 116892, 2020, doi: 10.1016/j.carbpol.2020.116892.
[7] A. Sheikhi, Emerging Cellulose-Based Nanomaterials and Nanocomposites. Elsevier Inc., 2019.
[8] A. Farooq et al., “International Journal of Biological Macromolecules Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose / zinc oxide nanocomposite materials,” Int. J. Biol. Macromol., vol. 154, pp. 1050–1073, 2020, doi: 10.1016/j.ijbiomac.2020.03.163.
[9] J. Velásquez-Cock et al., “Poly (vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils,” Carbohydr. Polym., vol. 179, pp. 118–125, 2018, doi: 10.1016/j.carbpol.2017.09.089.
[10] F. Ghaemi, L. C. Abdullah, and H. Ariffin, Chapter 2. Lignocellulose Structure and the Effect on Nanocellulose Production. Elsevier Inc., 2019.
[11] J. Velasquez-Cock et al., “Food Hydrocolloids Improved redispersibility of cellulose nano fi brils in water using maltodextrin as a green , easily removable and non-toxic additive,” vol. 79, pp. 30–39, 2018, doi: 10.1016/j.foodhyd.2017.12.024.
[12] C. Amara, A. El Mahdi, R. Medimagh, and K. Khwaldia, “ScienceDirect Nanocellulose-based composites for packaging applications Cyrine Amara , Ayoub El Mahdi , Raouf Medimagh and,” 2018, doi: 10.1016/j.cogsc.2021.100512.
[13] H. W. Kwak, J. You, M. E. Lee, and H. J. Jin, “Prevention of cellulose nanofibril agglomeration during dehydration and enhancement of redispersibility by hydrophilic gelatin,” Cellulose, vol. 0123456789, 2019, doi: 10.1007/s10570-019-02387-z.
[14] J. Tang, J. Sisler, N. Grishkewich, and K. C. Tam, “Journal of Colloid and Interface Science Functionalization of cellulose nanocrystals for advanced applications,” J. Colloid Interface Sci., vol. 494, pp. 397–409, 2017, doi: 10.1016/j.jcis.2017.01.077.
[15] K. J. Nagarajan, A. N. Balaji, and N. R. Ramanujam, “Extraction of cellulose nano fi bers from cocos nucifera var aurantiaca peduncle by ball milling combined with chemical treatment,” Carbohydr. Polym., vol. 212, no. November 2018, pp. 312–322, 2019, doi: 10.1016/j.carbpol.2019.02.063.
[16] M. L. Foo, C. W. Ooi, K. W. Tan, I. Mei, and L. Chew, “A Step Closer to Sustainable Industrial Production: Tailor the Properties of Nanocrystalline Cellulose from Oil Palm Empty Fruit Bunch,” Biochem. Pharmacol., no. May, p. 104058, 2020, doi: 10.1016/j.jece.2020.104058.
[17] S. Rashid and H. Dutta, “Industrial Crops & Products Characterization of nanocellulose extracted from short , medium and long grain rice husks,” Ind. Crop. Prod., vol. 154, no. July 2019, p. 112627, 2020, doi: 10.1016/j.indcrop.2020.112627.
[18] M. A. F. Supian, K. N. M. Amin, S. S. Jamari, and S. Mohamad, “Production of cellulose nanofi ber (CNF) from empty fruit bunch (EFB) via mechanical method,” J. Environ. Chem. Eng., no. March, p. 103024, 2019, doi: 10.1016/j.jece.2019.103024.
[19] S. Mehanny et al., “Extraction and characterization of nanocellulose from three types of palm residues,” J. Mater. Res. Technol., vol. 10, pp. 526–537, 2020, doi: 10.1016/j.jmrt.2020.12.027.
[20] I. Hidayatulloh, E. M. Widyanti, E. Kusumawati, and L. Elizabeth, “Nanocellulose Production from Empty Palm Oil Fruit Bunches ( EPOFB ) Using Hydrolysis Followed by Freeze Drying,” 2021, doi: 10.22146/ajche.61093.
[21] P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, and A. Abudula, “Nanocellulose : Extraction and application,” Carbon Resour. Convers., 2018, doi: 10.1016/j.crcon.2018.05.004.
[22] L. Tang et al., “Bioresource Technology Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid,” Bioresour. Technol., vol. 127, pp. 100–105, 2013, doi: 10.1016/j.biortech.2012.09.133.
[23] M. Doble and A. Kumar, “Degradation of Polymers,” in Biotreatment of Industrial Effluents, 2005, pp. 101–110.
[24] M. Asad, N. Saba, A. M. Asiri, M. Jawaid, E. Indarti, and W. D. Wanrosli, “Preparation and Characterization of Nanocomposite Films from Oil Palm Pulp Nanocellulose/Poly (Vinyl alcohol) by Casting Method,” Carbohydr. Polym., 2018, doi: 10.1016/j.carbpol.2018.03.015.
[25] F. Niu et al., “The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance,” Carbohydr. Polym., 2017, doi: 10.1016/j.carbpol.2017.02.048.
[26] M. S. Sarwar, M. Bilal, K. Niazi, Z. Jahan, T. Ahmad, and A. Hussain, “Graphical abstract SC,” Carbohydr. Polym., 2017, doi: 10.1016/j.carbpol.2017.12.068.
[27] T. Khai Chyi, F. Mei Ling, O. Chien Wei, and C. Irene Mei Leng, “Chemosphere Sustainable and cost-effective approach for the synthesis of lignin-containing cellulose nanocrystals from oil palm empty fruit bunch,” vol. 267, 2021, doi: 10.1016/j.chemosphere.2020.129277.
[28] F. Carissa, N. Mutiarasari, E. Kusumawati, and E. M. Widyanti, “PRODUCTION OF NANOCELLULOSE AS A TISSUE FILLER FROM PALM OIL EMPTY FRUIT BUNCHES,” Bandung, 2020.
[29] M. A. Gildelarosa, R. E. Fahira, E. M. Widyanti, and E. Kusumawati, “Utilization of Nanocellulose as a Tissue Filler from Palm Oil Empty Fruit Bunches,” 2019.